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Notions of convergence play a central role in Riemannian geometry, often having
an impact long before and long after their formal introduction.

Around 1980, Gromov started a geometric revolution when he introduced what
is now called the Gromov—Hausdorff metric, in part to put Cheeger’s 1967 finiteness
theorem into a broader context. By definition, the distance between two compact
spaces X and Y is < ¢ if and only if there is a (not necessarily continuous!) map
f:+X — Y so that

|dist (z1,x2) — dist (f (z1), f (22))| < € for all x1, 9
and for all y € Y, there is an « € X so that
|dist (y, f ()] <e.

Given the very crude nature of Gromov-Hausdorff distance, it is surprising how
extremely important it has become. So many famous results rely on the notion
of Gromov—Hausdorff convergence that it is not practical to list them; Perelman’s
Stability Theorem, is just one of many. Gromov—Hausdorff distance has permeated
many aspects of geometry, from comparison geometry, to large scale (hyperbolic)
geometry, to Kéalher geometry, to geometric group theory.

We will explore the impact of Gromov-Hausdorff convergence on manifolds with
curvature bounded from below, starting with Gromov and Cheeger’s celebrated
work, through Perelman’s Stability Theorem, and also current open problems about
collapse with a lower curvature bound.
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