Departamento de Matemáticas UAM

  • Inicio
  • Inicio (2)
  • Presentación
  • Directorio
  • Organigrama
  • Intranet
  • Convocatoria de plazas

Investigación

  • Ayudas para investigación
  • Departamento
  • Grupos de investigación
  • Institutos de investigación
  • Seminars
  • Joint Mathematics Colloquium ICMAT-UAM-UC3M-UCM
    • Coloquios 2022/2023
    • Coloquios 2021/2022
    • Coloquio UAM-ICMAT
      • Coloquios 2019/2020
      • Coloquios 2018/2019
      • Coloquios 2017/2018
      • Coloquios 2016/2017
      • Coloquios 2015/2016
      • Coloquios 2014/2015
      • Coloquios 2013/2014
      • Coloquios 2012/2013
      • Coloquios 2011/2012
      • Coloquios 2010/2011
      • Coloquios 2009/2010
  • Memorial Rubio de Francia
  • Coloquio Premio Rubio de Francia
  • Coloquios Departamento

Why Bohr got interested in his radius and what it has led to

Kristian Seip, Trondheim, Norway. (pdf)
Viernes 11 de diciembre a las 11:30 en la sala 520 del módulo 17 de Ciencias, UAM

Resumen: The Bohr radius, named after the Danish mathematician Harald Bohr, is the largest nonnegative number {tex}{\scriptsize r}{/tex} such that

{tex}\[ \sum_{n=0}^{\infty} |a_n| r^n\le \sup_{|z|<1} |\sum_{n=1}^{\infty }a_n z^n|,\]{/tex}

where the sum on the right-hand side represent an arbitrary function analytic and bounded in the open unit disk. It has been known for almost a century that in fact {tex}{\scriptsize{r}}{/tex} {tex}{\scriptsize\!=\frac13\,{.}}{/tex} I will explain why Bohr got interested in his radius and what his ideas have led to. A central theme in the talk will be the remarkable inequality of Bohnenblust and Hille on the coefficients of homogeneous polynomials. Among other things, we will see how this inequality leads to interesting estimates for Dirichlet polynomials.

Volver

CSS Valid | XHTML Valid | Top | + | - | reset
Copyright © Eximium 2025 All rights reserved. Custom Design by Youjoomla.com
Inicio