Departamento de Matemáticas UAM

  • Inicio
  • Inicio (2)
  • Presentación
  • Directorio
  • Organigrama
  • Intranet
  • Convocatoria de plazas

Investigación

  • Ayudas para investigación
  • Departamento
  • Grupos de investigación
  • Institutos de investigación
  • Seminars
  • Joint Mathematics Colloquium ICMAT-UAM-UC3M-UCM
    • Coloquios 2022/2023
    • Coloquios 2021/2022
    • Coloquio UAM-ICMAT
      • Coloquios 2019/2020
      • Coloquios 2018/2019
      • Coloquios 2017/2018
      • Coloquios 2016/2017
      • Coloquios 2015/2016
      • Coloquios 2014/2015
      • Coloquios 2013/2014
      • Coloquios 2012/2013
      • Coloquios 2011/2012
      • Coloquios 2010/2011
      • Coloquios 2009/2010
  • Memorial Rubio de Francia
  • Coloquio Premio Rubio de Francia
  • Coloquios Departamento

Nonparametric prediction of stationary time series

Lázslö Györfi, Budapest University of Technology and Economics, Hungria

Viernes 11 de junio, Módulo 17 (antiguo C-XV), aula 520 a las 11:30 hr.

Resumen: We present simple procedures for the prediction of a real valued time series with side information. For squared loss (regression problem), survey the basic principles of universally consistent nonparametric regression function estimates. The prediction algorithms are based on a machine aggregation of several simple predictors. We show that if the sequence is a realization of a stationary and ergodic random process then the average of squared errors converges, almost surely, to that of the optimum, given by the Bayes predictor. We offer an analog result for the prediction of stationary gaussian processes. These prediction strategies have some consequences for $0-1$ loss (pattern recognition problem).

Volver

CSS Valid | XHTML Valid | Top | + | - | reset
Copyright © Eximium 2025 All rights reserved. Custom Design by Youjoomla.com
Inicio