Departamento de Matemáticas UAM

  • Inicio
  • Inicio (2)
  • Presentación
  • Directorio
  • Organigrama
  • Intranet
  • Convocatoria de plazas

Investigación

  • Ayudas para investigación
  • Departamento
  • Grupos de investigación
  • Institutos de investigación
  • Seminars
  • Joint Mathematics Colloquium ICMAT-UAM-UC3M-UCM
    • Coloquios 2022/2023
    • Coloquios 2021/2022
    • Coloquio UAM-ICMAT
      • Coloquios 2019/2020
      • Coloquios 2018/2019
      • Coloquios 2017/2018
      • Coloquios 2016/2017
      • Coloquios 2015/2016
      • Coloquios 2014/2015
      • Coloquios 2013/2014
      • Coloquios 2012/2013
      • Coloquios 2011/2012
      • Coloquios 2010/2011
      • Coloquios 2009/2010
  • Memorial Rubio de Francia
  • Coloquio Premio Rubio de Francia
  • Coloquios Departamento

Pattern formation and Partial Differential Equations

Felix Otto, Director at the Max Planck Institute for Mathematics in the Sciences, Leipzig (cartel)

4 de mayo, 2012, 11:30 h., Módulo 17, Facultad de Ciencias, sala 520

Abstract

In three specific examples, we shall demonstrate how the theory of partial differential equations (PDEs) relates to pattern formation in nature: Spinodal decomposition and the Cahn-Hilliard equation, Rayleigh-B\'enard convection and the Boussinesq approximation, rough crystal growth and the Kuramoto-Sivashinsky equation.


These examples from different applications have in common that only a few physical mechanisms, which are modeled by simple-looking evolutionary PDEs, lead to complex patterns. These mechanisms will be explained, numerical simulation shall serve as a visual experiment. Numerical simulations also reveal that generic solutions of these deterministic equations have stationary or self-similar statistics that are independent of the system size and of the details of the initial data.


We show how PDE methods, i.e. a priori estimates, can be used to understand some aspects of this universal behavior. In case of the Cahn-Hilliard equation, the method makes use of its gradient flow structure and a property of the energy landscape. In case of the Boussinesq equation, a ``driven gradient flow '', the background field method is used. In case of the Kuramoto-Sivashinsky equation, that mixes conservative and dissipative dynamics, the method relies on a new result on Burgers' equation.

Volver

CSS Valid | XHTML Valid | Top | + | - | reset
Copyright © Eximium 2025 All rights reserved. Custom Design by Youjoomla.com
Inicio