Departamento de Matemáticas UAM

  • Inicio
  • Inicio (2)
  • Presentación
  • Directorio
  • Organigrama
  • Intranet
  • Convocatoria de plazas

Investigación

  • Ayudas para investigación
  • Departamento
  • Grupos de investigación
  • Institutos de investigación
  • Seminars
  • Joint Mathematics Colloquium ICMAT-UAM-UC3M-UCM
    • Coloquios 2022/2023
    • Coloquios 2021/2022
    • Coloquio UAM-ICMAT
      • Coloquios 2019/2020
      • Coloquios 2018/2019
      • Coloquios 2017/2018
      • Coloquios 2016/2017
      • Coloquios 2015/2016
      • Coloquios 2014/2015
      • Coloquios 2013/2014
      • Coloquios 2012/2013
      • Coloquios 2011/2012
      • Coloquios 2010/2011
      • Coloquios 2009/2010
  • Memorial Rubio de Francia
  • Coloquio Premio Rubio de Francia
  • Coloquios Departamento

Manifolds on the verge of a regularity breakdown

Rafael de la Llave, School of Mathematics of Georgia Tech

21 de diciembre, 2012. Departamento de Matemáticas, Aula 520, 11:30.

There are two main stability arguments for solutions in dynamical systems: the theory of normal hyperbolicity and the Kolmogorov-Arnold-Moser theory of perturbations.
In recent times, there has been progress in developing versions of the theory that are well suited for computations. The theory does not require that the system is close to integrable, but rather uses geometric identities. The theorems prove that approximate solutions satisfying some non-degeneracy assumptions correspond to a true solution. Furthermore, the proofs lead at the same time to very efficient algorithms.
Implementing these algorithms, leads to some conjectural insights on the phenomena that happen at breakdown. They turn out to be remarkably similar to phenomena that were observed in phase transitions and the "renormalization group" provides a unifying point of view. Nevertheless, many questions remain open.

Volver

CSS Valid | XHTML Valid | Top | + | - | reset
Copyright © Eximium 2025 All rights reserved. Custom Design by Youjoomla.com
Inicio