Departamento de Matemáticas UAM

  • Inicio
  • Inicio (2)
  • Presentación
  • Directorio
  • Organigrama
  • Intranet
  • Convocatoria de plazas
Mes anteior Día anterior
Anual
Mensual
Semanal
Diario
Buscar
Ir al mes específico
Día siguiente Mes siguiente
Anual Mensual Semanal Hoy Buscar Ir al mes específico
LECTURA DE TESIS DOCTORAL

LECTURA DE TESIS DOCTORAL

Título: Non-commutative symplectic NQ-geometry and Courant algebroids

Día: Martes, 26/01/2016 Hora: 12:00 Lugar: Aula Naranja, Instituto de Ciencias Matemáticas (ICMAT) Doctorando: David Fernández (UAM-ICMAT) Director: Luis Álvarez Cónsul


Abstract:
In this thesis we propose a notion of non-commutative Courant algebroid that satisfies the Kontsevich–Rosenberg principle, whereby a structure on an associative algebra has geometric meaning if it induces standard geometric structures on its representation spaces. Replacing vector fields on varieties by Crawley-Boevey’s double derivations on associative algebras, this principle has been successfully applied by Crawley-Boevey, Etingof and Ginzburg to symplectic structures, and by Van den Bergh to Poisson structures. A direct approach to define non-commutative Courant algebroids fails, because the Cartan identities are unknown in the calculus of non-commutative differential forms and double derivations, so in this thesis we follow an indirect method. Following ideas of Ševera, Roytenberg proved that symplectic NQ-manifolds of weights 1 and 2 are in 1-1 correspondence with Poisson manifolds and Courant algebroids, respectively. Our method to construct non-commutative Courant algebroids is to adapt this result to a graded version of the formalism of Crawley-Boevey, Etingof and Ginzburg. We start generalizing to graded associative algebras the theories of bi-symplectic forms and double Poisson brackets of Crawley-Boevey–Etingof–Ginzburg and Van den Bergh, respectively, obtaining a notion of bi-symplectic NQ-algebra. In this framework, we prove suitable Darboux theorems and prove a 1-1 correspondence between appropriate bi-symplectic NQ-algebras of weight 1 and Van den Berg’s double Poisson algebras. We then use suitable non-commutative Lie and Atiyah algebroids to describe bi-symplectic N-graded algebras of weight 2 defined by means of graded quivers, in terms of Van den Berg’s pairings on projective bimodules. Using non-commutative derived brackets, we calculate the algebraic structure that corresponds to symplectic NQ-algebras of this type. By the analogy with Roytenberg’s correspondence, we call this structure a double Courant–Dorfman algebra.

 

Localización Día: Martes, 26/01/2016 Hora: 12:00 Lugar: Aula Naranja, Instituto de Ciencias Matemáticas (ICMAT)
CSS Valid | XHTML Valid | Top | + | - | reset
Copyright © Eximium 2025 All rights reserved. Custom Design by Youjoomla.com
Inicio