Departamento de Matemáticas UAM

  • Inicio
  • Inicio (2)
  • Presentación
  • Directorio
  • Organigrama
  • Intranet
  • Convocatoria de plazas

Estudios

  • Grado
  • Posgrado
  • Aula Abierta
  • Facultad de Ciencias

Investigación

  • Ayudas para investigación
  • Departamento
  • Grupos de investigación
  • Institutos de investigación
  • Seminarios
  • Joint Mathematics Colloquium ICMAT-UAM-UC3M-UCM
  • Memorial Rubio de Francia
  • Coloquio Premio Rubio de Francia
  • Coloquios Departamento

Divulgación

  • Semana de la Ciencia
  • Campamento de Verano
  • Matemáticas en La Corrala
  • Canal Youtube
  • Revista Qed
  • Otras Actividades
  • Blogs Divulgativos

Noticias Destacadas

       Agenda del Departamento

 

  • Información (provisional) sobre grupos y horarios de las asignaturas impartidas por el Departamento de Matemáticas, para el curso 2023-2024.

  • Propuestas de Trabajos de Fin de Grado para el curso 2023-2024.


 


Canal @matematicasuam

 

Enlace al canal del Departamento en youtube.

 


 


PIM (Pequeño Instituto de Matemáticas)

Con el objetivo de fomentar el interés por las matemáticas y dirigido a jóvenes entre 14 y 18 años, nace este proyecto de Instituto de Ciencias Matemáticas (ICMAT) en colaboración con nuestro Departamento, la Universidad Autónoma de Madrid y la Real Sociedad Matemática Española.

El proyecto comienzó en el curso académico 2022-2023. Ampliar información en su página web.

 

Mes anteior Día anterior
Anual
Mensual
Semanal
Diario
Buscar
Ir al mes específico
Día siguiente Mes siguiente
Anual Mensual Semanal Hoy Buscar Ir al mes específico
Seminario de Álgebra

Seminario de Álgebra


S. Dale Cutkosky

(University of Missouri)


"Extension under projection of associated graded rings along a valuation"

Lunes 5 de junio de 2017 a las 12:30 horas en el aula 420 del módulo 17


Resumen: A central method in resolution of singularities is to take a finite projection to a regular variety, and then to make a local analysis of the ramification of this projection to understand which blow ups are required to improve the singularity. In local uniformization, this analysis is made along a fixed, arbitrary  valuation, so it can be very complicated (the value group may not be finitely generated).

The relevant information about this projection, and the effect of the possible blow ups along the valuation, is captured in the extension of associated graded rings along the valuation. The associated graded ring along a valuation was introduced by Teissier; it is central in his work on local uniformization in positive characteristic.

In this talk we define the associated graded ring along the valuation, and consider the structure of the extension of associated graded rings along a  projection, and stable forms of the extension after sufficient blowing up along the valuation.

Localización Lunes 5 de junio de 2017 a las 12:30 horas en el aula 420 del módulo 17
CSS Valid | XHTML Valid | Top | + | - | reset
Copyright © Eximium 2025 All rights reserved. Custom Design by Youjoomla.com
Inicio