![]() |
|
Canal @matematicasuamEnlace al canal del Departamento en youtube. |
PIM (Pequeño Instituto de Matemáticas)Con el objetivo de fomentar el interés por las matemáticas y dirigido a jóvenes entre 14 y 18 años, nace este proyecto de Instituto de Ciencias Matemáticas (ICMAT) en colaboración con nuestro Departamento, la Universidad Autónoma de Madrid y la Real Sociedad Matemática Española. El proyecto comienzó en el curso académico 2022-2023. Ampliar información en su página web. |
Seminario teoría de grupos UAM-ICMAT
María Pe Pereira
(Universidad Complutense de Madrid)
"Curve monodromy, quasi-periodic diffeomorphism and tête-à-tête graphs"
Lunes 29/1/2018, 14:30, Aula 520, UAM
Resumen: I will report about a joint work with J. Fernández de Bobadilla and P. Portilla
which is also part of the PhD Thesis of the third author.
Norbert A’Campo defined tête-à-tête graphs and showed that if the monodromy
of a plane branch is periodic then it is a generalized Dehn twist along a tête-à-tête
graph.
We see that any periodic orientable diffeomorphisms of surfaces with non-empty
boundary is induced by a generalized Dehn twist along a tête-à-tête graph. In this
sense we generalize a result by Christian Graf.
We also study the more general case of quasi-periodic homeomorphisms of sur-
faces with boundary. Monodromy of an arbitrary plane curve is an example of
them. To codify this type of homeomorphisms we introduce the notion of mixed
tête-à-tête graph, improving a former version by A’Campo. We show that any
quasi periodic homeomorphism, subject to certain combinatorial restriction, can
be modelized with a mixed tête-à-tête graph. These restrictions are accomplished
by the monodromy of unibranch plane curves.
In this talk I will introduce the monodromy of plane branches, the quasi-periodic
automorpisms, the tête-à-tête graphs and the mentioned characterizations.