![]() |
|
Canal @matematicasuamEnlace al canal del Departamento en youtube. |
PIM (Pequeño Instituto de Matemáticas)Con el objetivo de fomentar el interés por las matemáticas y dirigido a jóvenes entre 14 y 18 años, nace este proyecto de Instituto de Ciencias Matemáticas (ICMAT) en colaboración con nuestro Departamento, la Universidad Autónoma de Madrid y la Real Sociedad Matemática Española. El proyecto comienzó en el curso académico 2022-2023. Ampliar información en su página web. |
Seminario Teoría de Números
Title: ON KOLYVAGIN'S CONJECTURE AND THE BLOCH-KATO FORMULA FOR MODULAR FORMS
SPEAKER: Stefano Vigno (Università degli Studi Genova)
DATE & TIME: Tuesday, 18th June 2019 - 11:30
VENUE: Aula 420, Módulo 17, Dpto. de Matemáticas, UAM
ORGANISER: UAM - ICMAT
ABSTRACT: A few years ago, Wei Zhang proved (under certain assumptions) Kolyvagin's conjecture on the non-triviality of his system of cohomology classes built out of the Euler system of Heegner points on a rational elliptic curve. He also proved the p-part of the Birch and Swinnerton-Dyer formula in analytic rank one. In this talk I will describe an analogue of Kolyvagin's conjecture for Heegner cycles on Kuga-Sato varieties and state the p-part of the Bloch-Kato formula for higher (even) weight modular forms in analytic rank one. Time permitting, I will briefly sketch our strategy of proof of these results. This is joint work (in progress) with Matteo Longo and Daniele Masoero.