Departamento de Matemáticas UAM

  • Inicio
  • Inicio (2)
  • Presentación
  • Directorio
  • Organigrama
  • Intranet
  • Convocatoria de plazas
Mes anteior Día anterior
Anual
Mensual
Semanal
Diario
Buscar
Ir al mes específico
Día siguiente Mes siguiente
Anual Mensual Semanal Hoy Buscar Ir al mes específico
Seminario de prelectura de tesis

Seminario de prelectura de tesis

Doctorando: Alejandro Gárriz Molina
Director: Fernando Quirós Gracián

 

Título: Large time behaviour in local and non-local diffusion
Fecha: 4 de noviembre de 2020, 11:30
Lugar: ONLINE, mediante una reunión virtual en el equipo de Microsoft Teams titulado "Prelectura tesis Alejandro Gárriz Molina (4 de noviembre)"

Si no sois miembros del equipo y queréis asistir, por favor escribid por email a Esta dirección de correo electrónico está siendo protegida contra los robots de spam. Necesita tener JavaScript habilitado para poder verlo.

Resumen: During this session we will discuss several different diffusion models, both local and non-local, paying special attention to the behaviour of their solutions for big times.

In the local case we will study the existence of wavefronts for the equations of the family
$$
u_t=Delta_p a(u) +
abla b(u) + c(u), p>1
$$
and later on these wavefronts will be used to determine the asymptotic behaviour of the solutions of the equation
$$
u_t = Delta_p u^m + h(u), m(p-1)>1, p>2,
$$
in dimension $Ngeq 1$, where $h(u)$ is a reaction term  (generally, either monostable, bistable or combustion type) whenever the solutions converge uniformly to 1, a question that will also be addressed in the session.
 
In the non-local case we will present two new models where two different operators are acting on different domains but are intertwined by a third non-local one, receiving the name of coupling models. The first model will present the coupling of a heat operator and an operator given by the convolution with a probability kernel, while the second will study the coupling of two fractional laplacians of different order coupled by a third one. In both cases questions about the existence of solutions, the decay rates of the $L^p$ norms of the solutions or the large time behaviour of them will be addressed, together with other questions about these novel models.
Localización Fecha: 4 de noviembre de 2020, 11:30
CSS Valid | XHTML Valid | Top | + | - | reset
Copyright © Eximium 2025 All rights reserved. Custom Design by Youjoomla.com
Inicio