Departamento de Matemáticas UAM

  • Inicio
  • Inicio (2)
  • Presentación
  • Directorio
  • Organigrama
  • Intranet
  • Convocatoria de plazas

Estudios

  • Grado
  • Posgrado
  • Aula Abierta
  • Facultad de Ciencias

Investigación

  • Ayudas para investigación
  • Departamento
  • Grupos de investigación
  • Institutos de investigación
  • Seminarios
  • Joint Mathematics Colloquium ICMAT-UAM-UC3M-UCM
  • Memorial Rubio de Francia
  • Coloquio Premio Rubio de Francia
  • Coloquios Departamento

Divulgación

  • Semana de la Ciencia
  • Campamento de Verano
  • Matemáticas en La Corrala
  • Canal Youtube
  • Revista Qed
  • Otras Actividades
  • Blogs Divulgativos

Noticias Destacadas

       Agenda del Departamento

 

  • Información (provisional) sobre grupos y horarios de las asignaturas impartidas por el Departamento de Matemáticas, para el curso 2023-2024.

  • Propuestas de Trabajos de Fin de Grado para el curso 2023-2024.


 


Canal @matematicasuam

 

Enlace al canal del Departamento en youtube.

 


 


PIM (Pequeño Instituto de Matemáticas)

Con el objetivo de fomentar el interés por las matemáticas y dirigido a jóvenes entre 14 y 18 años, nace este proyecto de Instituto de Ciencias Matemáticas (ICMAT) en colaboración con nuestro Departamento, la Universidad Autónoma de Madrid y la Real Sociedad Matemática Española.

El proyecto comienzó en el curso académico 2022-2023. Ampliar información en su página web.

 

Mes anteior Día anterior
Anual
Mensual
Semanal
Diario
Buscar
Ir al mes específico
Día siguiente Mes siguiente
Anual Mensual Semanal Hoy Buscar Ir al mes específico
Machine learning in Madrid
Machine learning in Madrid
 
Lunes 22 de febrero de 2020, 12-13h

Ponente:  Borjan Geshkovski (UAM)

Título: The interplay of control theory and deep learning
 
 Microsoft teams (https://teams.microsoft.com/l/meetup-join/19%3a2ae25c9f15ac485fbea44e8090110f50%40thread.tacv2/1613658855281?context=%7b%22Tid%22%3a%22fc6602ef-8e88-4f1d-a206-e14a3bc19af2%22%2c%22Oid%22%3a%22deefb9b8-fab2-49ff-b6cf-f18c553b6fe0%22%7d) or contact Esta dirección de correo electrónico está siendo protegida contra los robots de spam. Necesita tener JavaScript habilitado para poder verlo. for an invite

“

 
Abstract: It is by now well-known that practical deep supervised learning may roughly be cast as an optimal control problem for a specific discrete-time, nonlinear dynamical system called an artificial neural network. In this talk, we consider the continuous-time formulation of the deep supervised learning problem, and give an overview of the key challenges. 
We will mainly concentrate on presenting this problem's behavior when the final time horizon is increased. a fact that can be interpreted as increasing the number of layers in the neural network setting. We show qualitative and quantitative estimates of the convergence to zero training error depending on the functional to be minimized.
 
Enlace:   https://conectaha.csic.es/b/mar-mrf-oj9-ui0
 
Referencias:

[1] Benning, M., Celledoni, E., Ehrhardt, M. J., Owren, B., and Schönlieb, C.-B. (2019). Deep learning as optimal control problems: Models and numerical methods. Journal of Computational Dynamics, 6(2):171. 

[2] Chen, T. Q., Rubanova, Y., Bettencourt, J., and Duvenaud, D. K. (2018). Neural ordinary differential equations. In Advances in Neural Information Processing Systems, pages 6571–6583.

[3] E, W. (2017). A proposal on machine learning via dynamical systems. Communications in Mathematics and Statistics, 5(1):1–11. 

[4] Esteve, C., Geshkovski, B., Pighin, D., and Zuazua, E. Large-time asymptotics in deep learning. arXiv preprint arXiv:2008.02491 (2020). 

[5] Haber, E. and Ruthotto, L. (2017). Stable architectures for deep neural networks. Inverse Problems, 34(1):014004.

 
Localización Lunes 22 de febrero de 2020, 12-13h
CSS Valid | XHTML Valid | Top | + | - | reset
Copyright © Eximium 2025 All rights reserved. Custom Design by Youjoomla.com
Inicio