Departamento de Matemáticas UAM

  • Inicio
  • Inicio (2)
  • Presentación
  • Directorio
  • Organigrama
  • Intranet
  • Convocatoria de plazas
Mes anteior Día anterior
Anual
Mensual
Semanal
Diario
Buscar
Ir al mes específico
Día siguiente Mes siguiente
Anual Mensual Semanal Hoy Buscar Ir al mes específico
seminarios Teoría de Números

seminarios Teoría de Números

Numerical equivalence of $mathbb R$-divisors and Shioda-Tate formula for arithmetic varieties

SPEAKER: Paolo Dolce (University of Udine)

DATE & TIME: Tuesday, March 02nd, 2021 - 17:30

ABSTRACT: Let $X$ be an arithmetic variety over the ring of integers of a number field $K$, and let $X_K$ be its generic fiber. We give a formula that relates the dimension of the first Arakelov-Chow vector space of $X$ with the Mordell-Weil rank of the Albanese variety of $X_K$ and the rank of the Néron-Severi group of $X_K$. This is a higher dimensional and arithmetic version of the classical Shioda-Tate
formula for elliptic surfaces. Such analogy is strengthened by the fact that we also show that the numerically trivial arithmetic $mathbb R$-divisors on $X$ are exactly the linear combinations of principal ones.

como siempre a través de Teams

Localización DATE & TIME: Tuesday, March 02nd, 2021 - 17:30
CSS Valid | XHTML Valid | Top | + | - | reset
Copyright © Eximium 2025 All rights reserved. Custom Design by Youjoomla.com
Inicio