Departamento de Matemáticas UAM

  • Inicio
  • Inicio (2)
  • Presentación
  • Directorio
  • Organigrama
  • Intranet
  • Convocatoria de plazas

Estudios

  • Grado
  • Posgrado
  • Aula Abierta
  • Facultad de Ciencias

Investigación

  • Ayudas para investigación
  • Departamento
  • Grupos de investigación
  • Institutos de investigación
  • Seminarios
  • Joint Mathematics Colloquium ICMAT-UAM-UC3M-UCM
  • Memorial Rubio de Francia
  • Coloquio Premio Rubio de Francia
  • Coloquios Departamento

Divulgación

  • Semana de la Ciencia
  • Campamento de Verano
  • Matemáticas en La Corrala
  • Canal Youtube
  • Revista Qed
  • Otras Actividades
  • Blogs Divulgativos

Noticias Destacadas

       Agenda del Departamento

 

  • Información (provisional) sobre grupos y horarios de las asignaturas impartidas por el Departamento de Matemáticas, para el curso 2023-2024.

  • Propuestas de Trabajos de Fin de Grado para el curso 2023-2024.


 


Canal @matematicasuam

 

Enlace al canal del Departamento en youtube.

 


 


PIM (Pequeño Instituto de Matemáticas)

Con el objetivo de fomentar el interés por las matemáticas y dirigido a jóvenes entre 14 y 18 años, nace este proyecto de Instituto de Ciencias Matemáticas (ICMAT) en colaboración con nuestro Departamento, la Universidad Autónoma de Madrid y la Real Sociedad Matemática Española.

El proyecto comienzó en el curso académico 2022-2023. Ampliar información en su página web.

 

Mes anteior Día anterior
Anual
Mensual
Semanal
Diario
Buscar
Ir al mes específico
Día siguiente Mes siguiente
Anual Mensual Semanal Hoy Buscar Ir al mes específico
Online Analysis and PDE seminar (UAM-UC-UC3M-UCM-ICMAT-IMUS)
Online Analysis and PDE seminar (UAM-UC-UC3M-UCM-ICMAT-IMUS)

The total variation flow in metric random walkspaces

Ponente: José M. Mazón (U. de Valencia)

Fecha: Miércoles 7 de abril de 2021 - 15:00

Lugar: Online - Instrucciones: https://sites.google.com/view/analysis-pde-seminar/

Resumen: Our aim is to study the Total Variation Flow (TVF) in metric random walkspaces (MRWS) which include as particular cases: the TVF on locally finite weighted connected graphs. We introduce the concepts of perimeter and meancurvature for subsets of a MRWS. After proving the existence and uniquenessof solutions of the TVF, we study the asymptotic behaviour of those solutions,and for such aim we establish some inequalities of Poincar ́e type. Furthermore,we introduce the concepts of Cheeger and calibrable sets in metric randomwalk spaces and characterize calibrability by using the 1-Laplacian operator.In connection with the Cheeger cut problem we study the eigenvalue problemwhereby we give a method to solve the optimal Cheeger cut problem.

Localización Fecha: Miércoles 7 de abril de 2021 - 15:00
CSS Valid | XHTML Valid | Top | + | - | reset
Copyright © Eximium 2025 All rights reserved. Custom Design by Youjoomla.com
Inicio