|  Agenda del Departamento | 
|   | Canal @matematicasuamEnlace al canal del Departamento en youtube. | 
| PIM (Pequeño Instituto de Matemáticas)Con el objetivo de fomentar el interés por las matemáticas y dirigido a jóvenes entre 14 y 18 años, nace este proyecto de Instituto de Ciencias Matemáticas (ICMAT) en colaboración con nuestro Departamento, la Universidad Autónoma de Madrid y la Real Sociedad Matemática Española. El proyecto comienzó en el curso académico 2022-2023. Ampliar información en su página web. | 
Jornada de primavera en EDPs. Viernes, 9 de abril de 2021, 10h- 11:25h 
 
 Enlace:   https://conectaha.csic.es/b/mar-e3k-scr-8wi
 Title: Cost of null controllability for parabolic equations with vanishing viscosity 
 
 Abstract: The transport-diffusion equation with vanishing diffusivity describes the dynamics 
 of physical and biological phenomena in which the transport dynamics dominates the 
 diffusive dynamics. Since these systems are of parabolic nature, it is well-known that 
 they are null controllable. However, there are many open questions on the asymptotic 
 behaviour of the cost of null contrallability when the diffusion parameter vanishes. 
 
 In this talk we study the transport-diffusion equation with Neumann, Robin and mixed 
 boundary conditions. The main results concern the behaviour of the cost of the null 
 controllability when the diffusivity vanishes and the control acts in the interior. First, we 
 prove that if we almost have Dirichlet boundary conditions in the part of the boundary 
 in which the flux of the transport enters, the cost of the controllability decays for a time 
 T sufficiently large. Next, we show some examples of Neumann and mixed boundary 
 conditions in which for any time T>0 the cost explodes exponentially. Finally, we study 
 the cost of the problem with Neumann boundary conditions when the control is localized 
 in the whole domain.