Departamento de Matemáticas UAM

  • Inicio
  • Inicio (2)
  • Presentación
  • Directorio
  • Organigrama
  • Intranet
  • Convocatoria de plazas

Estudios

  • Grado
  • Posgrado
  • Aula Abierta
  • Facultad de Ciencias

Investigación

  • Ayudas para investigación
  • Departamento
  • Grupos de investigación
  • Institutos de investigación
  • Seminarios
  • Joint Mathematics Colloquium ICMAT-UAM-UC3M-UCM
  • Memorial Rubio de Francia
  • Coloquio Premio Rubio de Francia
  • Coloquios Departamento

Divulgación

  • Semana de la Ciencia
  • Campamento de Verano
  • Matemáticas en La Corrala
  • Canal Youtube
  • Revista Qed
  • Otras Actividades
  • Blogs Divulgativos

Noticias Destacadas

       Agenda del Departamento

 

  • Información (provisional) sobre grupos y horarios de las asignaturas impartidas por el Departamento de Matemáticas, para el curso 2023-2024.

  • Propuestas de Trabajos de Fin de Grado para el curso 2023-2024.


 


Canal @matematicasuam

 

Enlace al canal del Departamento en youtube.

 


 


PIM (Pequeño Instituto de Matemáticas)

Con el objetivo de fomentar el interés por las matemáticas y dirigido a jóvenes entre 14 y 18 años, nace este proyecto de Instituto de Ciencias Matemáticas (ICMAT) en colaboración con nuestro Departamento, la Universidad Autónoma de Madrid y la Real Sociedad Matemática Española.

El proyecto comienzó en el curso académico 2022-2023. Ampliar información en su página web.

 

Mes anteior Día anterior
Anual
Mensual
Semanal
Diario
Buscar
Ir al mes específico
Día siguiente Mes siguiente
Anual Mensual Semanal Hoy Buscar Ir al mes específico
Machine learning in Madrid

Machine learning in Madrid

Lunes, 22 de noviembre de 2021, 12-13h

Ponente: Anulf Jentzen (University of Münster)

Título:  Convergence analysis for gradient descent optimization methods in the training of artificial neural networks

Abstract: Gradient descent (GD) type optimization methods are the standard instrument to train artificial neural networks (ANNs) with rectified linear unit (ReLU) activation. Despite the great success of GD type optimization methods in numerical simulations for the training of ANNs with ReLU activation, it remains -- even in the simplest situation of the plain vanilla GD optimization method with random initializations -- an open problem to prove (or disprove) the conjecture that the true risk of the GD optimization method converges in the training of ANNs with ReLU activation to zero as the width/depth of the ANNs, the number of independent random initializations, and the number of GD steps increase to infinity. In this talk we prove this conjecture in the situation where the probability distribution of the input data is equivalent to the continuous uniform distribution on a compact interval, where the probability distributions for the random initializations of the ANN parameters are standard normal distributions, and where the target function under consideration is continuous and piecewise affine linear.

Enlace:   https://us06web.zoom.us/j/85201627751?pwd=TEZoakM5SEhkMjNVQjFON3lvaW1udz09

Localización Lunes, 22 de noviembre de 2021, 12-13h
CSS Valid | XHTML Valid | Top | + | - | reset
Copyright © Eximium 2025 All rights reserved. Custom Design by Youjoomla.com
Inicio