![]() |
|
Canal @matematicasuamEnlace al canal del Departamento en youtube. |
PIM (Pequeño Instituto de Matemáticas)Con el objetivo de fomentar el interés por las matemáticas y dirigido a jóvenes entre 14 y 18 años, nace este proyecto de Instituto de Ciencias Matemáticas (ICMAT) en colaboración con nuestro Departamento, la Universidad Autónoma de Madrid y la Real Sociedad Matemática Española. El proyecto comienzó en el curso académico 2022-2023. Ampliar información en su página web. |
Machine learning in Madrid (zoom)
Lunes, 25 de abril de 2022, 13:00-14:00 (horario diferente al habitual!!!!)
Enlace: https://us06web.zoom.us/j/85740874805?pwd=dGFSQi8xREFMcHVTQjRBSlVmRSsxdz09
Ponente: Nicolas Garcia Trillos (University of Wisconsin-Madison)
Título: The multimarginal optimal transport formulation of adversarial multiclass classification
Abstract: Adversarial training is a framework widely used by machine learning practitioners to enforce robustness of learning models. Despite the development of several computational strategies for adversarial training and some theoretical development in the broader distributionally robust optimization literature, there are still several theoretical questions about adversarial training that remain relatively unexplored. In this talk, I will discuss an equivalence between adversarial training in the context of non-parametric multiclass classification problems and multimarginal optimal transport problems. This is another analytical interpretation of adversarial training that expands recently studied connections to perimeter minimization problems. One of the implications of the connection discussed during the talk is computational: to solve a certain adversarial problem, we may as well solve a multimarginal optimal transport problem. We will discuss many of the nuances of this interpretation and of its computational consequences. This is joint work with my student Jakwang Kim (UW) and my colleague Matt Jacobs (Purdue).