Departamento de Matemáticas UAM

  • Inicio
  • Inicio (2)
  • Presentación
  • Directorio
  • Organigrama
  • Intranet
  • Convocatoria de plazas

Estudios

  • Grado
  • Posgrado
  • Aula Abierta
  • Facultad de Ciencias

Investigación

  • Ayudas para investigación
  • Departamento
  • Grupos de investigación
  • Institutos de investigación
  • Seminarios
  • Joint Mathematics Colloquium ICMAT-UAM-UC3M-UCM
  • Memorial Rubio de Francia
  • Coloquio Premio Rubio de Francia
  • Coloquios Departamento

Divulgación

  • Semana de la Ciencia
  • Campamento de Verano
  • Matemáticas en La Corrala
  • Canal Youtube
  • Revista Qed
  • Otras Actividades
  • Blogs Divulgativos

Noticias Destacadas

       Agenda del Departamento

 

  • Información (provisional) sobre grupos y horarios de las asignaturas impartidas por el Departamento de Matemáticas, para el curso 2023-2024.

  • Propuestas de Trabajos de Fin de Grado para el curso 2023-2024.


 


Canal @matematicasuam

 

Enlace al canal del Departamento en youtube.

 


 


PIM (Pequeño Instituto de Matemáticas)

Con el objetivo de fomentar el interés por las matemáticas y dirigido a jóvenes entre 14 y 18 años, nace este proyecto de Instituto de Ciencias Matemáticas (ICMAT) en colaboración con nuestro Departamento, la Universidad Autónoma de Madrid y la Real Sociedad Matemática Española.

El proyecto comienzó en el curso académico 2022-2023. Ampliar información en su página web.

 

Mes anteior Día anterior
Anual
Mensual
Semanal
Diario
Buscar
Ir al mes específico
Día siguiente Mes siguiente
Anual Mensual Semanal Hoy Buscar Ir al mes específico
SEMINARIO TEORÍA DE NÚMEROS

SEMINARIO TEORÍA DE NÚMEROS

Title: An inverse theorem for Freiman multi-homomorphisms and its applications

SPEAKER: Luka Milićević (Mathematical Institute of the Serbian Academy of Sciences and Arts)

DATE: Monday, June 13th - 17:30

PLACE: Online, Microsoft Teams (código: owfo832)

ABSTRACT: In the field of additive combinatorics, one is frequently interested in approximate versions of algebraic structures. One of the key examples of such objects is a Freiman homomorphism. This is a map Phi defined on a subset A of an abelian group G mapping its elements to another abelian group H with the property that whenever a,b,c,d in A satisfy a + b = c + d then Phi(a) + Phi(b) = Phi(c) + Phi(d). When Gand H are vector spaces over a prime field F_p and A is sufficiently
dense, it turns out that Freiman homomorphisms essentially come from restrictions of affine maps (which satisfy the same property, but are defined on whole group).

Let now G_1,..., G_k be vector spaces over F_p. In this talk I am interested in a multidimensional generalization of the notion of a Freiman homomorphism. We say that a map Phi defined on a subset of the product G_1 x ... x G_k is a Freiman multi-homomorphism if Phi is a Freiman homomorphism in every principal direction (i.e. when x_i in G_i is fixed for each i except one direction d, the map that sends
element x_d to Phi(x_1,..., x_k) is a Freiman homomorphism, where we allow those x_d for which (x_1,..., x_k) is in the domain of Phi).

It turns out that a Freiman multi-homorphism defined on a dense subset of G_1 x ... x G_k necessarily coincides with a global multiaffine map at many points. In this talk I will discuss the proof of this fact which Tim Gowers and I proved in a joint work. I will also discuss applications of this theorem and some related more recent developments.

Localización DATE: Monday, June 13th - 17:30
CSS Valid | XHTML Valid | Top | + | - | reset
Copyright © Eximium 2025 All rights reserved. Custom Design by Youjoomla.com
Inicio