Departamento de Matemáticas UAM

  • Inicio
  • Inicio (2)
  • Presentación
  • Directorio
  • Organigrama
  • Intranet
  • Convocatoria de plazas

Estudios

  • Grado
  • Posgrado
  • Aula Abierta
  • Facultad de Ciencias

Investigación

  • Ayudas para investigación
  • Departamento
  • Grupos de investigación
  • Institutos de investigación
  • Seminarios
  • Joint Mathematics Colloquium ICMAT-UAM-UC3M-UCM
  • Memorial Rubio de Francia
  • Coloquio Premio Rubio de Francia
  • Coloquios Departamento

Divulgación

  • Semana de la Ciencia
  • Campamento de Verano
  • Matemáticas en La Corrala
  • Canal Youtube
  • Revista Qed
  • Otras Actividades
  • Blogs Divulgativos

Noticias Destacadas

       Agenda del Departamento

 

  • Información (provisional) sobre grupos y horarios de las asignaturas impartidas por el Departamento de Matemáticas, para el curso 2023-2024.

  • Propuestas de Trabajos de Fin de Grado para el curso 2023-2024.


 


Canal @matematicasuam

 

Enlace al canal del Departamento en youtube.

 


 


PIM (Pequeño Instituto de Matemáticas)

Con el objetivo de fomentar el interés por las matemáticas y dirigido a jóvenes entre 14 y 18 años, nace este proyecto de Instituto de Ciencias Matemáticas (ICMAT) en colaboración con nuestro Departamento, la Universidad Autónoma de Madrid y la Real Sociedad Matemática Española.

El proyecto comienzó en el curso académico 2022-2023. Ampliar información en su página web.

 

Mes anteior Día anterior
Anual
Mensual
Semanal
Diario
Buscar
Ir al mes específico
Día siguiente Mes siguiente
Anual Mensual Semanal Hoy Buscar Ir al mes específico
Online Analysis and PDE seminar (UAM-UC-UC3M-UCM-ICMAT-IMUS)
Online Analysis and PDE seminar (UAM-UC-UC3M-UCM-ICMAT-IMUS)

Spectral  boundary homogenization problems with high contrasts

Conferenciante: Maria Eugenia Pérez, Universidad de Cantabria

Fecha: Miércoles 15 de junio de 2022 - 15:00

Enlace al seminario

Resumen: We consider a spectral homogenization problem for the elasticity operator posed in a bounded domain of the upper half-space, a part of its boundary being in contact with the plane. We assume that this surface is free outside small regions in which we impose Robin-Winkler boundary conditions linking stresses and displacements by means of a symmetric and positive definite matrix and a reaction parameter. These small regions are periodically placed along the plane while its size is much smaller than the period. We provide all the possible spectral homogenized problems depending on certain asymptotic relations between the period, the size of the regions and the reaction-parameter. We show the convergence of the eigenelements, as the period tends to zero, which deeply involves the corresponding microscopic stationary problems obtained by means of asymptotic expansions.

Referencias:
[1] D. Gómez, S.A. Nazarov, ; M.-E. Pérez-Martínez. Asymptotics for spectral problems with rapidly alternating boundary conditions on a strainer Winkler foundation. Journal of Elasticity, 2020, V. 142, p. 89-120.
[2] D. Gómez, S.A. Nazarov ; M.-E. Pérez-Martínez. Spectral homogenization problems in linear elasticity with large reaction terms concentrated in small regions of the boundary. In: Computational and Analytic Methods in Science and Engineering. Birkäuser, Springer, N.Y., 2020, pp. 121-143
[3] M.-E. Pérez-Martínez. Homogenization for alternating boundary conditions with large reaction terms concentrated in small regions. In: Emerging problems in the homogenization of Partial Differential Equations. ICIAM2019 SEMA SIMAI Springer Series 10, 2021, pp. 37-57.

 

Página web del seminario
Localización Fecha: Miércoles 15 de junio de 2022 - 15:00
CSS Valid | XHTML Valid | Top | + | - | reset
Copyright © Eximium 2025 All rights reserved. Custom Design by Youjoomla.com
Inicio