Departamento de Matemáticas UAM

  • Inicio
  • Inicio (2)
  • Presentación
  • Directorio
  • Organigrama
  • Intranet
  • Convocatoria de plazas

Estudios

  • Grado
  • Posgrado
  • Aula Abierta
  • Facultad de Ciencias

Investigación

  • Ayudas para investigación
  • Departamento
  • Grupos de investigación
  • Institutos de investigación
  • Seminarios
  • Joint Mathematics Colloquium ICMAT-UAM-UC3M-UCM
  • Memorial Rubio de Francia
  • Coloquio Premio Rubio de Francia
  • Coloquios Departamento

Divulgación

  • Semana de la Ciencia
  • Campamento de Verano
  • Matemáticas en La Corrala
  • Canal Youtube
  • Revista Qed
  • Otras Actividades
  • Blogs Divulgativos

Noticias Destacadas

       Agenda del Departamento

 

  • Información (provisional) sobre grupos y horarios de las asignaturas impartidas por el Departamento de Matemáticas, para el curso 2023-2024.

  • Propuestas de Trabajos de Fin de Grado para el curso 2023-2024.


 


Canal @matematicasuam

 

Enlace al canal del Departamento en youtube.

 


 


PIM (Pequeño Instituto de Matemáticas)

Con el objetivo de fomentar el interés por las matemáticas y dirigido a jóvenes entre 14 y 18 años, nace este proyecto de Instituto de Ciencias Matemáticas (ICMAT) en colaboración con nuestro Departamento, la Universidad Autónoma de Madrid y la Real Sociedad Matemática Española.

El proyecto comienzó en el curso académico 2022-2023. Ampliar información en su página web.

 

Mes anteior Día anterior
Anual
Mensual
Semanal
Diario
Buscar
Ir al mes específico
Día siguiente Mes siguiente
Anual Mensual Semanal Hoy Buscar Ir al mes específico
Machine learning in Madrid

Machine learning in Madrid

Lunes, 26 de septiembre de 2022, 17-18h

Ponente: Boris Hanin (Princeton University)

Título:   Ridgeless Interpolation in 1D with One Layer ReLU Networks and Tight Generalization Bounds for Learning Lipschitz Functions

Abstract:  In this talk, I will give a complete answer to the question of how neural networks use training data to make predictions on unseen inputs in a very simple setting. Namely, for a fixed dataset D = {(x_i,y_i), i=1,...,N} with x_i and y_i being scalars, I will consider the space of all one layer ReLU networks of arbitrary width that exactly fit this data and, among all such interpolants, achieve the minimal possible L_2-norm on the neuron weights. Intuitively, this is the space of "ridgeless ReLU interpolants" in that sense that it consists of ReLU networks that minimize the mean squared error over D plus an infinitesimal L_2-regularization on the neuron weights. I will give a complete characterization of how such ridgeless ReLU interpolants can make predictions on intervals (x_i, x_{i+1}) between consecutive datapoints. I will then explain how to use this characterization to obtain, uniformly over the infinite collection of ridgeless ReLU interpolants of a given dataset D, tight generalization bounds under the assumption y_i = f(x_i) with f a Lipschitz function. 

Enlace:    https://us06web.zoom.us/j/82490461958

Localización Lunes, 26 de septiembre de 2022, 17-18h
CSS Valid | XHTML Valid | Top | + | - | reset
Copyright © Eximium 2025 All rights reserved. Custom Design by Youjoomla.com
Inicio