Departamento de Matemáticas UAM

  • Inicio
  • Inicio (2)
  • Presentación
  • Directorio
  • Organigrama
  • Intranet
  • Convocatoria de plazas
Mes anteior Día anterior
Anual
Mensual
Semanal
Diario
Buscar
Ir al mes específico
Día siguiente Mes siguiente
Anual Mensual Semanal Hoy Buscar Ir al mes específico
Seminario Teoría de Números

Seminario Teoría de Números

Title: On the Artin formalism for Garrett-Rankin p-adic L-functions

SPEAKER: Daniele Casazza (University College Dublin)

DATE & TIME: Miércoles 01 de febrero - 16:30

VENUE: Aula 420, Departamento de Matemáticas, UAM.

ABSTRACT: In the last decade, the Garrett-Rankin p-adic L-function associated with a triple of modular forms (f,g,h) has been studied by many authors because of its connection with diagonal cycles, which makes it relevant in the study of the Birch and Swinnerton-Dyer conjecture. In our work we study how the Artin formalism translates in the p-adic setting when h=g*, and the central critical motive associated with the triple (f,g,g*) therefore splits as a direct sum. The shape of the factorization of p-adic L-functions that we obtain reminds of previous results in different contexts by Dasgupta, Palvannan, and Gross. However, their setting contains non-critical motives in stark contrast to ours, and our factorization is veryt irregular in the Perrin-Riou framework. This is the first occurrence of this type of phenomenon, and we interpret it in the context of what we call "the Bertolini-Darmon-Prasanna philosophy", where p-adic L-function play the role of p-adic avatars of the derivative of their complex counterpart. This work is joint with K. Büyükboduk and R. Sakamoto.

 

CSS Valid | XHTML Valid | Top | + | - | reset
Copyright © Eximium 2025 All rights reserved. Custom Design by Youjoomla.com
Inicio