Departamento de Matemáticas UAM

  • Inicio
  • Inicio (2)
  • Presentación
  • Directorio
  • Organigrama
  • Intranet
  • Convocatoria de plazas

Estudios

  • Grado
  • Posgrado
  • Aula Abierta
  • Facultad de Ciencias

Investigación

  • Ayudas para investigación
  • Departamento
  • Grupos de investigación
  • Institutos de investigación
  • Seminarios
  • Joint Mathematics Colloquium ICMAT-UAM-UC3M-UCM
  • Memorial Rubio de Francia
  • Coloquio Premio Rubio de Francia
  • Coloquios Departamento

Divulgación

  • Semana de la Ciencia
  • Campamento de Verano
  • Matemáticas en La Corrala
  • Canal Youtube
  • Revista Qed
  • Otras Actividades
  • Blogs Divulgativos

Noticias Destacadas

       Agenda del Departamento

 

  • Información (provisional) sobre grupos y horarios de las asignaturas impartidas por el Departamento de Matemáticas, para el curso 2023-2024.

  • Propuestas de Trabajos de Fin de Grado para el curso 2023-2024.


 


Canal @matematicasuam

 

Enlace al canal del Departamento en youtube.

 


 


PIM (Pequeño Instituto de Matemáticas)

Con el objetivo de fomentar el interés por las matemáticas y dirigido a jóvenes entre 14 y 18 años, nace este proyecto de Instituto de Ciencias Matemáticas (ICMAT) en colaboración con nuestro Departamento, la Universidad Autónoma de Madrid y la Real Sociedad Matemática Española.

El proyecto comienzó en el curso académico 2022-2023. Ampliar información en su página web.

 

Mes anteior Día anterior
Anual
Mensual
Semanal
Diario
Buscar
Ir al mes específico
Día siguiente Mes siguiente
Anual Mensual Semanal Hoy Buscar Ir al mes específico
SEMINARIO TEORÍA DE GRUPOS

SEMINARIO TEORÍA DE GRUPOS

Finite sets (containing zero) are mapping degree sets

Ponente: Vicente Muñoz (Universidad Complutense de Madrid)

Fecha: Martes, 21 de febrero de 2023 - 11:30

Lugar: Aula Naranja, ICMAT

Resumen:

Let M,N be two oriented closed connected manifolds of dimension n. We define the mapping degree set as deg(M,N)={deg(f)| f:M-> N}. It is very relevant to construct inflexible manifolds M, i.e. deg(M,M) is bounded, and strongly inflexible manifolds M, i.e. for all N, deg(N,M) is bounded. They serve to produce functorial seminorms on n-manifolds.

On the other hand, one may ask which sets of integers can appear as deg(M,N) for some M,N. By cardinality reasons, not all sets can. Here we shall prove that any finite set of integers A, containing 0, is a mapping degree set for some choice. We extend this question to the rational homotopy theory setting, where an affirmative answer is also given, by using Sullivan models. (Joint work with C.Costoya and A.Viruel).


CSS Valid | XHTML Valid | Top | + | - | reset
Copyright © Eximium 2025 All rights reserved. Custom Design by Youjoomla.com
Inicio