Departamento de Matemáticas UAM

  • Inicio
  • Inicio (2)
  • Presentación
  • Directorio
  • Organigrama
  • Intranet
  • Convocatoria de plazas
Mes anteior Día anterior
Anual
Mensual
Semanal
Diario
Buscar
Ir al mes específico
Día siguiente Mes siguiente
Anual Mensual Semanal Hoy Buscar Ir al mes específico
Seminario de análisis y aplicaciones

Seminario de análisis y aplicaciones

Título: Studying nonlinear eigenvalue problems in L-infinity with convex analysis

Ponente: Yury Korolev, University of Bath

Resumen: We study a nonlinear eigenvalue problem associated with the Rayleigh quotient |u|Lip/|u|C, where |u|Lip is the Lipschitz constant of a function u defined on a bounded domain in ℝn  and |u|C is its supremum norm. The problem of minimising this Rayleigh quotient is closely related to the infinity Laplacian: minimisers include infinity-harmonic potentials and so-called infinity ground states defined as solutions of a certain limiting PDE obtained by taking the limit p → ∞ in the p-Laplace eigenvalue problem. Another notable minimiser is the distance function to the boundary of the domain. Unlike existing literature that studies L-infinity problems as limits of Lp problems, we study the limiting problem directly using tools from convex analysis. This allows us to obtain results that hold for _all_ minimisers of the Rayleigh quotient. We obtain optimality conditions in form of a divergence PDE using a novel characterisation of the subdifferential of the Lipschitz seminorm u ↦ |u|Lip as a functional on C. We also study a minimisation problem for the dual Rayleigh quotient involving Radon measures and a variant of the Kantorovich-Rubinstein norm, and relate minimisers of the L-infinity Rayleigh quotient to solutions of an optimal transport problem.

This is joint work with Leon Bungert, University of Bonn.

Lugar y hora: Aula 520, Módulo 17; 11:00--12:00. 

Café: Habrá un coffee break entre el seminario de análisis y el de EDPs ☕☕ 

CSS Valid | XHTML Valid | Top | + | - | reset
Copyright © Eximium 2025 All rights reserved. Custom Design by Youjoomla.com
Inicio