Departamento de Matemáticas UAM

  • Inicio
  • Inicio (2)
  • Presentación
  • Directorio
  • Organigrama
  • Intranet
  • Convocatoria de plazas
Mes anteior Día anterior
Anual
Mensual
Semanal
Diario
Buscar
Ir al mes específico
Día siguiente Mes siguiente
Anual Mensual Semanal Hoy Buscar Ir al mes específico
“Online Analysis and PDE”

 “Online Analysis and PDE”

Wednesday May 17th at  15:00h.  

Speaker: Joaquim Serra

ETH Zurich

Title: Nonlocal approximation of minimal surfaces: optimal estimates from stability. 

Abstract: Minimal surfaces in closed 3-manifolds are classically constructed via the Almgren- Pitts approach. The Allen-Cahn approximation has proved to be a powerful alternative, and

Chodosh and Mantoulidis (in Ann. Math. 2020) used it to give a new proof of Yau's conjecture for generic metrics and establish the multiplicity one conjecture.

In a recent paper with Chan, Dipierro, and Valdinoci we set the ground for a new approximation based on nonlocal minimal surfaces. More precisely, we prove that stable s-minimal surfaces in the unit ball of $R^3$ satisfy curvature estimates that are robust as s approaches 1 (i.e. as the energy approaches that of classical minimal surfaces). 

Moreover, we obtain optimal sheet separation estimates and show that critical interactions are encoded by nontrivial solutions to a  (local) "Toda type" system.

As a nontrivial application, we establish that hyperplanes are the only stable s-minimal hypersurfaces in $R^4$, for $s$ sufficiently close to 1.

 

 

 

Please, visit our   SITE OF THE SEMINAR  for more information on the next seminars, organizers, etc..

CSS Valid | XHTML Valid | Top | + | - | reset
Copyright © Eximium 2025 All rights reserved. Custom Design by Youjoomla.com
Inicio