Departamento de Matemáticas UAM

  • Inicio
  • Inicio (2)
  • Presentación
  • Directorio
  • Organigrama
  • Intranet
  • Convocatoria de plazas
Mes anteior Día anterior
Anual
Mensual
Semanal
Diario
Buscar
Ir al mes específico
Día siguiente Mes siguiente
Anual Mensual Semanal Hoy Buscar Ir al mes específico
SEMINARIO GEOMETRÍA

SEMINARIO GEOMETRÍA

Noncommutative Poisson geometry and pre-Calabi-Yau algebras

Ponente: David Fernández (Luxembourg University)

Fecha: Jueves, 29 de junio de 2023 - 12:00

Lugar: Aula Gris 1, ICMAT

Resumen:

A long-standing problem in Poisson geometry has been the definition of suitable 'noncommutative Poisson structures'. To solve it, M. Van den Bergh introduced double Poisson algebras and double quasi-Poisson algebras, which can be regarded as noncommutative analogues of the usual Poisson and quasi-Poisson manifolds, respectively. N. Iyudu and M. Kontsevich found an insightful correspondence between double Poisson algebras and pre-Calabi-Yau algebras; certain cyclic A_infty-algebras which can be seen as noncommutative versions of shifted Poisson manifolds. In this talk I will present an extension of the Iyudu-Kontsevich correspondence to the differential graded setting. I will also explain how double quasi-Poisson algebras give rise to pre-Calabi-Yau algebras. Interestingly, they involve an infinite number of non-vanishing higher multiplications weighted by the Bernoulli numbers. This is a joint work with E. Herscovich (Grenoble).
 

CSS Valid | XHTML Valid | Top | + | - | reset
Copyright © Eximium 2025 All rights reserved. Custom Design by Youjoomla.com
Inicio