

Photograph by Chris Reich

2-DIMENSIONAL MINIMAL CONES IN \mathbb{R}^4

Madrid, February 2010

Guy David, Université de Paris Sud (Orsay)

Results from V. Feuvrier and XiangYu Liang

Goal of the lecture: first step towards a characterization of 2-dimensional minimal cones in \mathbb{R}^4 , and description of a result on the almost orthogonal union of two two-planes.

Here minimal will be in the sense of soap films (or Almgren minimal sets), as follows.

Definition. Let 0 < d < n be integers, and $\Omega \subset \mathbb{R}^n$ open. The closed set $E \subset \Omega$ is minimal in Ω when

(1)
$$\mathcal{H}^d(E \setminus F) \le \mathcal{H}^d(F \setminus E)$$

for all competitors F for E in Ω .

Definition. A competitor for E in Ω is a set $F = f_1(E)$, where

(2)
$$(x,t) \to f_t(x) : E \times [0,1] \to \Omega \text{ is continuous,}$$

$$f_0(x) = x \text{ for } x \in E, \text{ and, if we set } W_t = \{x \in E ; f_t(x) \neq x\},\$$

(3)
$$\bigcup_{0 < t < 1} [W_t \cup f_t(W_t)] \text{ is relatively compact in } \Omega.$$

We also require f_1 to be Lipschitz.

So F is a deformation of E in Ω .

The condition on the f_t is not needed when Ω is, say, convex. Important: f_1 is not always injective; we are allowed to pinch.

Almgren's definitions are almost equivalent.

We shall only look at reduced sets: E is equal to the closed support of \mathcal{H}^2 restricted to E. Easy reduction

We define almost-minimal sets with the gauge function h (with $\lim_{r\to 0} h(r) = 0$) the same way but we require that

(4)
$$\mathcal{H}^d(E \setminus F) \le \mathcal{H}^d(F \setminus E) + r^d h(r)$$

when $F = f_1(E)$ is a competitor for E in Ω , such that $\bigcup_{0 \le t \le 1} [W_t \cup f_t(W_t)]$ is contained in a ball of radius r.

We worry about existence and regularity for these sets. Even when d = 1, they are not smooth (pictures).

So far, mostly regularity results inside Ω , but no general existence results for Plateau problems, and not much boundary regularity available.

For inside regularity at least, knowing the minimal cones helps a lot, because for all $x \in E$, the density

(5)
$$r \to \theta(r) = r^{-d} \mathcal{H}^d(E \cap B(x,r)),$$

is almost monotonous, we have theorems on limits, and every constant-density minimal set (including any blow-up limit) is a cone.

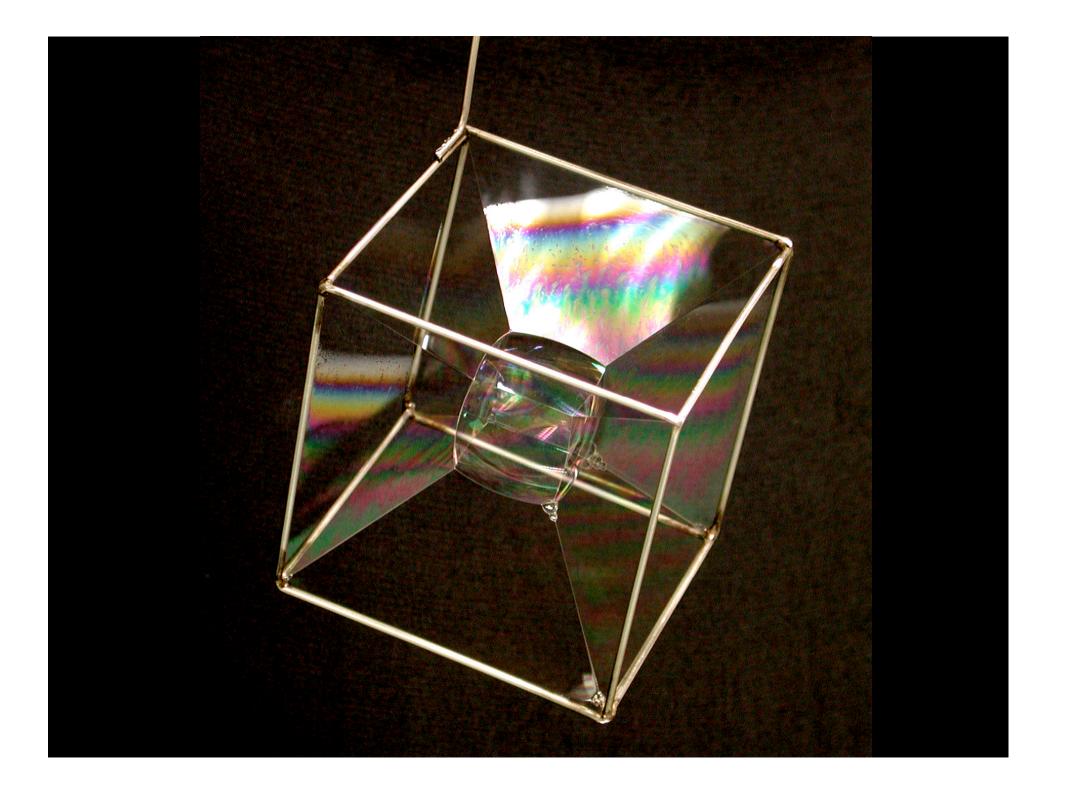
2. Minimal cones in \mathbb{R}^3 .

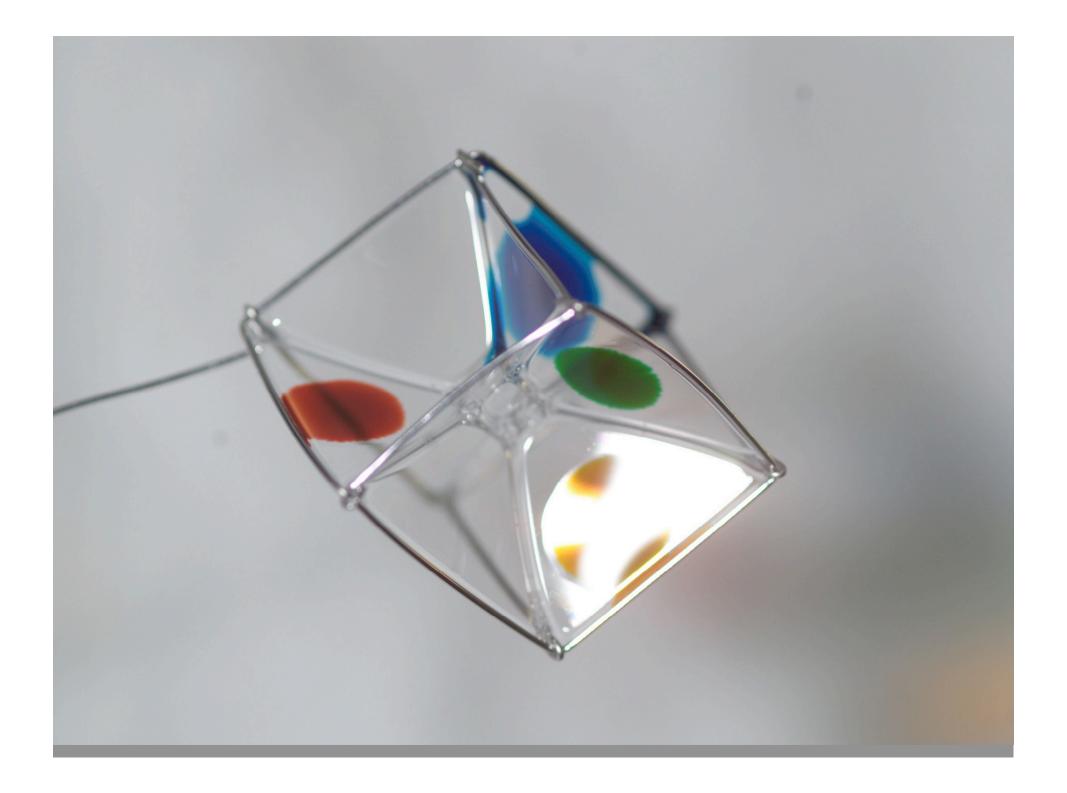
For d = 1, the cones are the lines and the Y (3 half lines with the same origin, and that make 120 degree angles). Even true in \mathbb{R}^n .

Locally every almost minimal set of dimension 1 looks like a line or a Y (modulo a C^1 diffeomorphism).

For d=2 and n=3, the minimal cones are the planes, the sets $\mathbb{Y}=Y\times\mathbb{R}$ (three half planes with 120 degree angles), and the sets \mathbb{T} (cone over the union of the edges of a regular tetrahedron; they have 6 faces and 4 edges). Pictures.

Theorem [Jean Taylor, 1978]. Locally, every almost-minimal set is C^1 -equivalent to a minimal cone (as above) if h is small enough near 0.





3. Minimal cones of dimension 2 in \mathbb{R}^n .

We have a (too) general description. Let E be such a cone. Set $K = E \cap \partial B(0,1)$.

Then K is a finite union of circles and arcs of circles.

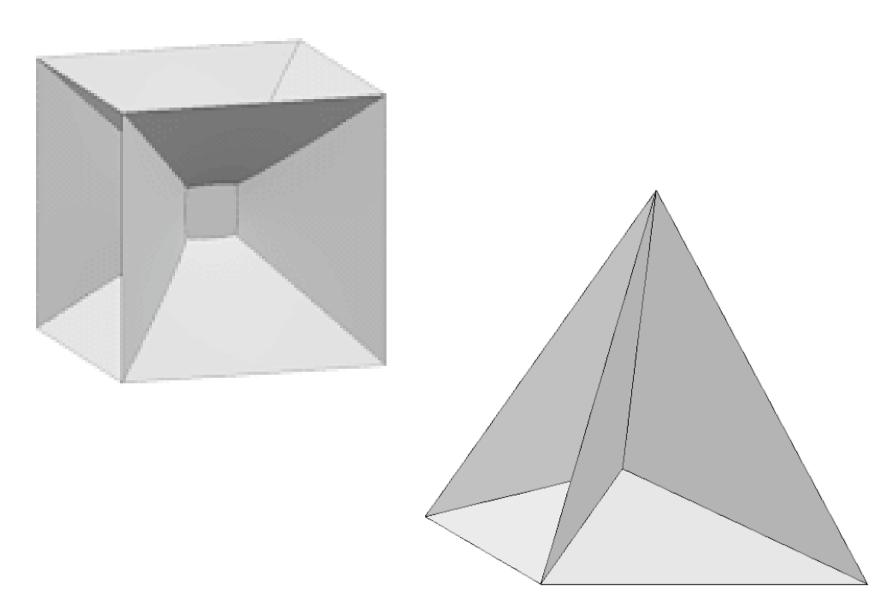
The circles are far from the rest of K. At their ends, the arcs meet by sets of 3, with 120° angles (no free ends). The arcs are not too short.

Examples in \mathbb{R}^3 :

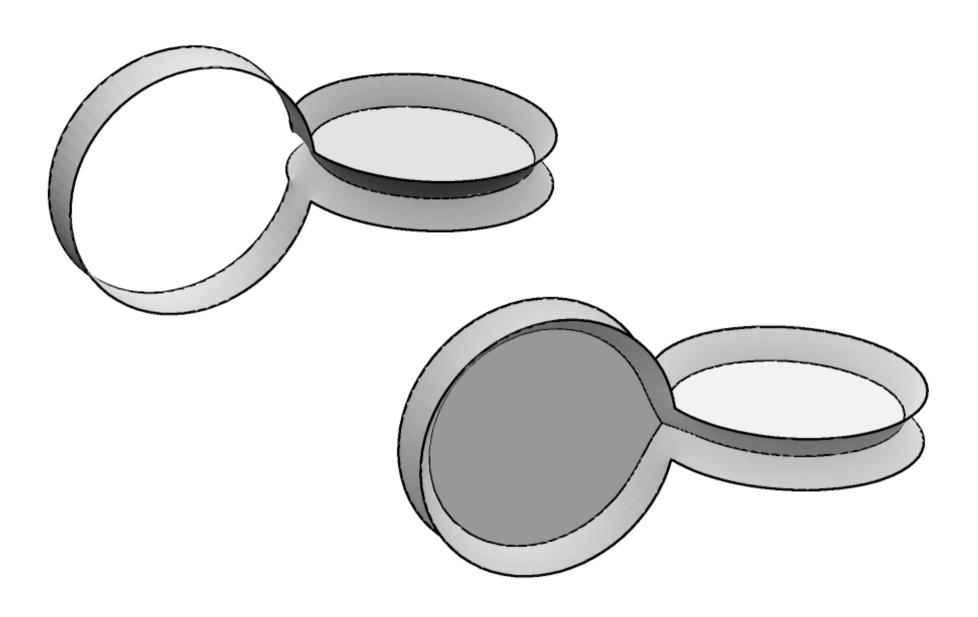
A plane corresponds to a circle

 $\mathbb{Y} = Y \times \mathbb{R}$ corresponds to three half circles meeting at the two poles

T comes from 6 arcs of circles (the projections of the edges of the trahedron).



Pictures from K. Brakke's site



Pictures from K. Brakke's site

More examples in \mathbb{R}^4 :

Two disjoints circles gives a transverse union $P_1 \cup P_2$ of 2-planes. But is it minimal?

 $Y \times Y$ (the product of two sets Y contained in orthogonal planes) corresponds to a net of 9 arcs of circles.

But is it minimal?

Is there a one-parameter family of minimal cones with K connected?

Incidentally: is every minimal 2-set in \mathbb{R}^3 (or \mathbb{R}^4) automatically a cone?

4. Local regularity of almost-minimal 2-sets in \mathbb{R}^n ? (besides Jean Taylor's theorem)

Let E be an almost-minimal 2-set in \mathbb{R}^n , $n \geq 4$, and let $x \in E$.

Known: E is, in some B(x,r), biHölder-equivalent to a minimal cone.

But we don't have a list of minimal cones.

We can get the C^1 -equivalence in some cases only, depending on the "full length property" of one (or all) tangent minimal cone(s) to E at x.

[Property concerning the variations of length for perturbations of K into other nets of geodesic arcs. We don't have counterexamples either.]

5. When is $P_1 \cup P_2 \subset \mathbb{R}^4$ minimal?

Théorème 1. The union $P_1 \cup P_2$ of two orthogonal planes is minimal.

This is classical, and relies on the following facts.

- Denote by π_j the orthogonal projection onto P_j . Then $\pi_j(F)$ contains P_j whenever F is a competitor for $P_1 \cup P_2$.
- If F is rectifiable if ds denotes a surface element of F, then

(6)
$$\pi_1(ds) + \pi_2(ds) \le ds.$$

Amusingly false in dimension d = 1. By the way, $L_1 \cup L_2$ is never minimal. **Proof.** We shall use this like a calibration. Out of some cube Q, $F = P_1 \cup P_2$. And on Q,

$$\mathcal{H}^{2}(F \cap Q) = \int_{F \cap Q} ds \ge \int_{F \cap Q} \pi_{1}(ds) + \pi_{2}(ds)$$

$$\ge \mathcal{H}^{2}(\pi_{1}(F \cap Q)) + \mathcal{H}^{2}(\pi_{2}(F \cap Q))$$

$$\ge \mathcal{H}^{2}(P_{1} \cap Q) + \mathcal{H}^{2}(P_{2} \cap Q)$$

$$= \mathcal{H}^{2}((P_{1} \cup P_{2}) \cap Q). \quad \Box$$

Lemma. If $P_1 \perp P_2$, $P_1 \cup P_2$ is the only minimal set in Q s.t. $\mathcal{H}^2(E) \leq \mathcal{H}^2((P_1 \cup P_2) \cap Q)$ and $\pi_j(E) \supset P_j \cap Q$ for j = 1, 2.

Proof. We check the equality cases in (6), and the minimality finally allows us to eliminate the remaining cases.

When is $P_1 \cup P_2$ minimal?

When they make small angles, we can pinch in the middle and $P_1 \cup P_2$ is not minimal.

Frank Morgan gives a conjectural condition on the angles, under which $P_1 \cup P_2$ should be minimal, and Gary Lawler shows that one can pinch when it is not satisfied. Partial converse below.

We focus on the almost orthogonal union $P^{\varepsilon} = P_1^{\varepsilon} \cup P_2^{\varepsilon}$, where

$$|\langle v_1, v_2 \rangle| \le \varepsilon |v_1| |v_2| \text{ for } v_1 \in P_1^{\varepsilon} \text{ and } v_2 \in P_2^{\varepsilon}.$$

Theorem (Xiangyu Liang). If $\varepsilon > 0$ is small enough, P^{ε} is minimal.

6. Scheme of a proof modulo Plateau

Recall $P^{\varepsilon} = P_1^{\varepsilon} \cup P_2^{\varepsilon}$. Suppose that, for a sequence of ε that tends to $0, P^{\varepsilon}$ is not minimal.

Let $E^{\varepsilon} = f(P^{\varepsilon})$ be a better competitor in the unit cube Q. We look for a contradiction. Unfortunately, no known algebraic trick as above.

Easy: f should not be injective. But we need to show that we save less by pinching than we lose by rotating the P_j before.

Note that for ε small, (6) almost holds and pinching pays very little.

Things would be easier if E^{ε} minimized $\mathcal{H}^2(E \cap Q)$ among deformations of P^{ε} in Q. So that we can use the minimality of E^{ε} in Q. Unfortunately, no known result seems to give such an E^{ε} . Bul let us pretend anyway (a more complicated fix exists).

Denote by π_1 and π_2 the orthogonal projections on P_1^{ε} and P_2^{ε} . We may assume that $P_1^{\varepsilon} = P_1$.

We take Q with faces parallel to the P_j .

Take a sequence of ε that tends to 0 such that E^{ε} tends to a limit E^{∞} . Each E^{ε} is minimal inside Q, so (by a theorem on limits) E^{∞} is minimal inside Q.

Next $\pi_j(E^{\varepsilon}) \supset P_j^{\varepsilon}$ (because E^{ε} is a deformation of P^{ε}), hence $\pi_j(E^{\infty}) \supset P_j$ (take limits).

Also $\mathcal{H}^2(E^{\varepsilon} \cap Q) < \mathcal{H}^d(P^{\varepsilon} \cap Q)$ by definition of E^{ε} , hence $\mathcal{H}^2(E^{\infty} \cap Q) \leq \mathcal{H}^d(P^{\varepsilon} \cap Q)$ by a theorem on the lower semicontinuity of \mathcal{H}^d along sequences of quasiminimal sets.

The lemma says that $E^{\infty} = P_1 \cup P_2$. That is,

$$(*)$$
 E^{ε} tends to $P_1 \cup P_2$.

Let $\delta > 0$ be small.

We want to find an origin x_0 and a radius r_0 such that E^{ε} is δr_0 -close to $x_0 + P_1 \cup P_2$ in $B(x_0, r_0)$ but $r_0/2$ does not work.

At large scales, E^{ε} looks a lot like $P_1 \cup P_2$, so (for ε small) $x_0 = 0$ and $10^{-2} \le r_0 \le 1$ would work.

When (x, r) works, we try to find (x', r/2). We stop when we cannot find x' any more. If we never stop, easier argument.

By construction, E^{ε} is $20r\delta$ -close to an $x + P_1 \cup P_2$ in every $B(x_0, 10r) \setminus B(x_0, r), r \geq r_0$.

By Jean Taylor' theorem and gluing, E^{ε} is composed of two nice C^1 graphs out of $B(x_0, 2r_0)$, E_1^{ε} (horizontal) and E_2^{ε} (vertical).

Define cylinders $V_j(r) = (\pi_j^{\varepsilon})^{-1}(B(x_0, r))$ for $r > r_0, j = 1, 2$.

First cut E^{ε} in three: choose $r \in (2r_0, 4r_0)$, and write $E^{\varepsilon} = F \cup F_1 \cup F_2$, with $F = E^{\varepsilon} \cap V_1(r) \cap V_2(r)$, $F_1 = E_1^{\varepsilon} \setminus V_1(r)$, and $F_2 = E_2^{\varepsilon} \setminus V_2(r)$. First ty to estimate brutally:

(1)
$$\mathcal{H}^{2}(E^{\varepsilon}) = \mathcal{H}^{2}(F) + \mathcal{H}^{2}(F_{1}) + \mathcal{H}^{2}(F_{2})$$
$$\geq \mathcal{H}^{2}(F) + \mathcal{H}^{2}(\pi_{1}^{\varepsilon}(F_{1})) + \mathcal{H}^{2}(\pi_{2}^{\varepsilon}(F_{2})).$$

For j = 1, 2, $\mathcal{H}^2(P_j^{\varepsilon}) = \mathcal{H}^2(\pi_j^{\varepsilon}(F_j)) + \mathcal{H}^2(\pi_j^{\varepsilon}(V_j(r)))$ (disjoint union). We subtract both things from (1) and get that $\mathcal{H}^2(E^{\varepsilon}) - \mathcal{H}^2(P_1^{\varepsilon} \cup P_2^{\varepsilon}) \geq \mathcal{H}^2(F) - \mathcal{H}^2(\pi_1^{\varepsilon}(V_1(r))) - \mathcal{H}^2(\pi_2^{\varepsilon}(V_2(r)))$ a contradiction with the definition of E^{ε} if we show that

(2)
$$\mathcal{H}^2(F) \ge \mathcal{H}^2(\pi_1^{\varepsilon}(V_1(r))) + \mathcal{H}^2(\pi_2^{\varepsilon}(V_2(r))).$$

Recall that we would like

(2)
$$\mathcal{H}^2(F) \ge \mathcal{H}^2(\pi_1^{\varepsilon}(V_1(r))) + \mathcal{H}^2(\pi_2^{\varepsilon}(V_2(r))).$$

But now the analogue of (6) on page 9 is that

(3)
$$\pi_1(ds) + \pi_2(ds) \le (1 - C\varepsilon)ds$$

(for surface elements ds in F), which merely yields

$$(4) \qquad (1 - C\varepsilon)\mathcal{H}^2(F) \ge \mathcal{H}^2(\pi_1^{\varepsilon}(V_1(r))) + \mathcal{H}^2(\pi_2^{\varepsilon}(V_2(r))).$$

So we shall get a contradiction if we can improve the estimates above by more than $C'\varepsilon r_0^2 \geq C\varepsilon \mathcal{H}^2(F)$.

Recall that for $2r_0 < r < 3r_0$, $E_{\varepsilon}^1 \cap \partial V_1(r)$ is the graph over the circle $c(r) = P_1^{\varepsilon} \cap \partial V_1(r)$ of a nice C^1 function f.

Case 1. We can find $r \in (2r_0, 3r_0)$ such that

(5)
$$\int_{c(r)} |f(x) - m_{c(r)}f|^2 dx \ge \delta_1^2 r^3$$

for some small $\delta_1 << \delta$) to be chosen later; $m_{c(r)}f$ is the mean value. We know that F_1 is the graph over $P_1^{\varepsilon} \setminus V_1(r)$ of a nice C^1 function g, with g = f on the boundary. Standard estimates on harmonic functions yield $\int |\nabla g|^2 \geq c\delta_1^2 r^2$, and then

(6)
$$\mathcal{H}^2(F_1) \ge \mathcal{H}^2(P_1^{\varepsilon} \setminus V_1(r)) + c\delta_1^2 r^2$$

which is more than enough (if ε is small).

Case 2. No r can be found as above, nor with respect to P_2^{ε} .

Recall that by minimality of r_0 , E^{ε} is $\delta r_0/2$ -far from all $x + P_1 \cup P_2$ in $B(x_0, r_0)$.

By a compactness argument, E^{ε} is also $\delta_2 r_0$ -far from all $x + P_1 \cup P_2$ in $V_1(3r_0) \cap V_2(3r_0) \setminus V_1(2r_0) \cap V_2(2r_0)$. Here $\delta_2 > 0$ is very small, depending on δ .

Then E_1^{ε} is $\delta_2 r_0$ -far from all planes in $V_1(3r_0) \setminus V_1(2r_0)$ (or the same thing with the vertical part).

Take $\delta_1 \ll \delta_2$. By definition of Case 2, every $E_1^{\varepsilon} \cap \partial V_1(r)$, $2r_0 \ll r \ll 3r_0$ is very close to a circle.

Then two of these circles (say with $2r_0 < r < r_1 < 3r_0$) are at different altitudes (more than $\delta_2 r_0/2$).

We further cut F_1 into $F_{1,1} = E_1^{\varepsilon} \cap V_1(r_1) \setminus V_1(r)$ and $F_{1,2} = E_1^{\varepsilon} \setminus V_1(r_1)$ and say that

$$\mathcal{H}^{2}(F_{1}) = \mathcal{H}^{2}(F_{1,1}) + \mathcal{H}^{2}(F_{1,2}) \ge \mathcal{H}^{2}(F_{1,1}) + \mathcal{H}^{2}(P_{1}^{\varepsilon} \setminus V_{1}(r_{1}))$$

and

$$\mathcal{H}^2(F_{1,1}) \ge \mathcal{H}^2(P_1^{\varepsilon} \cap V_1(r_1) \setminus V_1(r)) + c\delta_2^2 r_0^2$$

because of the different (almost circular) boundary values and a simple estimate on gradients. We add and get that

$$\mathcal{H}^2(F_1) \ge \mathcal{H}^2(P_1^{\varepsilon} \setminus V_1(r)) + c\delta_2^2 r_0^2,$$

a sufficient improvement.

How to manage without Plateau?

The previous argument shows that some existence results for Plateau-like problems could be useful. But here we can manage without this.

There is an argument by V. Feuvrier that constructs a minimal set E^{ε} in Q, starting from a correctly modified minimizing sequence $\{E_k^{\varepsilon}\}$ of deformations of $P_1^{\varepsilon} \cup P_2^{\varepsilon}$ in Q.

Now E^{ε} is not necessarily a deformation of the E_k^{ε} . But its projections still contain the P_j^{ε} , and eventually we can apply the uniqueness result above to show that $E^{\infty} = P_1 \cup P_2$.

REFERENCES

- F. J. Almgren, Existence and regularity almost everywhere of solutions to elliptic variational problems with constraints, Memoirs of the Amer. Math. Soc. 165, volume 4 (1976), i-199.
- L. Ambrosio, N. Fusco, and D. Pallara, Partial regularity of free discontinuity sets II., Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 24 (1997), 39-62.
- L. Ambrosio, N. Fusco and D. Pallara, Higher regularity of solutions of free discontinuity problems. Differential Integral Equations 12 (1999), no. 4, 499-520.
- G. Dal Maso, J.-M. Morel, and S. Solimini, A variational method in image segmentation: Existence and approximation results, Acta Math. 168 (1992), no. 1-2, 89–151.

- G. David, Limits of Almgren-quasiminimal sets, Proceedings of the conference on Harmonic Analysis, Mount Holyoke, A.M.S. Contemporary Mathematics series, Vol. 320 (2003), 119-145.
- G. David, Singular sets of minimizers for the Mumford-Shah functional, Progress in Mathematics 233 (581p.), Birkhäuser 2005.
- G. David, Quasiminimal sets for Hausdorff measures, in Recent Developments in Nonlinear PDEs, Proceeding of the second symposium on analysis and PDEs (June 7-10, 2004), Purdue University, D. Danielli editor, 81–99, Contemp. Math. 439, Amer. Math. Soc., Providence, RI, 2007.
- G. David, Hölder regularity of two-dimensional almost-minimal sets in \mathbb{R}^n , Annales de la faculté des sciences de Toulouse, Vol. 18, 1 (2009), 65-246.

- G. David, $C^{1+\alpha}$ -regularity for two-dimensional almost-minimal sets in \mathbb{R}^n , to be found at the address http://math.u-psud.fr/~gdavid/
- G. David and S. Semmes, Uniform rectifiability and quasiminimizing sets of arbitrary codimension, Memoirs of the A.M.S. Number 687, volume 144, 2000.
- H. Federer, <u>Geometric measure theory</u>, Grundlehren der Mathematishen Wissenschaften 153, Springer Verlag 1969.
- A Heppes, Isogonal sphärischen netze, Ann. Univ. Sci. Budapest Eötvös Sect. Math. 7 (1964), 41-48.
- E. Lamarle, Sur la stabilité des systèmes liquides en lames minces, Mém. Acad. R. Belg. 35 (1864), 3-104.

- Gary Lawlor and Frank Morgan, Paired calibrations applied to soap films, immiscible fluids, and surfaces or networks minimizing other norms, Pacific J. Math. 166 (1994), no. 1, 55–83.
- A. Lemenant, Thesis, Université de Paris-sud 2008.
- F. Morgan, Size-minimizing rectifiable currents, Invent. Math. 96 (1989), no. 2, 333-348.
- F. Morgan, Minimal surfaces, crystals, shortest networks, and undergraduate research, Math. Intelligencer 14 (1992), no. 3, 37–44. Morgan bis avec la calibration pour le 4eme minimiseur.
- E. R. Reifenberg, Solution of the Plateau Problem for m-dimensional surfaces of varying topological type, Acta Math. 104, 1960, 1–92.

- E. R. Reifenberg, An epiperimetric inequality related to the analyticity of minimal surfaces, Ann. of Math. (2) 80, 1964, 1–14.
- J. Taylor, The structure of singularities in soap-bubble-like and soap-film-like minimal surfaces, Ann. of Math. (2) 103 (1976), no. 3, 489–539.