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Results from V. Feuvrier and XiangYu Liang

Goal of the lecture: first step towards a characterization of 2-
dimensional minimal cones in R*, and description of a result
on the almost orthogonal union of two two-planes.

Here minimal will be in the sense of soap films (or Almgren
minimal sets), as follows.



Definition. Let 0 < d < n be integers, and {2 C R" open.
The closed set 2 C () is minimal in ) when

(1) HUE\F) <HY(F\E)

for all competitors F' for E in ().

Definition. A competitor for E in () is a set F' = f1(FE), where
(2) (x,t) — fi(z) : E x [0,1] — Q is continuous,

folx) =x for x € F, and, if we set Wy ={x € E; fi(x) # z},

(3) U (Wi U f(Wy)] is relatively compact in €2.
0<t<1



We also require f; to be Lipschitz.

So F' is a deformation of E in (2.

The condition on the f; is not needed when (2 is, say, convex.

Important : f; is not always injective; we are allowed to pinch.
Almgren’s definitions are almost equivalent.

We shall only look at reduced sets: E is equal to the closed
support of H? restricted to E. Easy reduction

We define almost-minimal sets with the gauge function h
(with lim,_,o A(r) = 0) the same way but we require that

(4) HUEN\F) <HUF\ E) +1rh(r)

when F' = f1(F) is a competitor for E in €2, such that
Uogtgl[Wt U f:(W;)] is contained in a ball of radius r.



We worry about existence and regularity for these sets.
Even when d = 1, they are not smooth (pictures).

So far, mostly regularity results inside {2, but no general
existence results for Plateau problems, and not much boundary
regularity available.

For inside regularity at least, knowing the minimal cones
helps a lot, because for all x € E, the density

(5) r— 0(r) =r "HYE N B(z,r)),

1s almost monotonous, we have theorems on limits, and
every constant-density minimal set (including any blow-up limit)
1S a cone.



2. Minimal cones in R°.

For d = 1, the cones are the lines and the Y (3 half lines
with the same origin, and that make 120 degree angles). Even
true in R™.

Locally every almost minimal set of dimension 1 looks like
a line or a Y (modulo a C! diffeomorphism).

For d = 2 and n = 3, the minimal cones are the planes,
the sets Y =Y X R (three half planes with 120 degree angles),
and the sets T (cone over the union of the edges of a regular
tetrahedron; they have 6 faces and 4 edges). Pictures.

Theorem [Jean Taylor, 1978]. Locally, every almost-minimal
set is C''-equivalent to a minimal cone (as above) if h is small
enough near 0.









3. Minimal cones of dimension 2 in R".

We have a (too) general description. Let F be such a cone.
Set K = FNOB(0,1).

Then K is a finite union of circles and arcs of circles.
The circles are far from the rest of K. At their ends, the arcs
meet by sets of 3, with 120° angles (no free ends). The arcs are
not too short.

Examples in R?:
A plane corresponds to a circle
Y =Y X R corresponds to three half circles meeting at the two
poles
T comes from 6 arcs of circles (the projections of the edges of
the trahedron).



Pictures from K. Brakke’s site



Pictures from K. Brakke’s site



More examples in R*:
Two disjoints circles gives a transverse union P; UP; of 2-planes.
But is it minimal?

Y x Y (the product of two sets Y contained in orthogonal
planes) corresponds to a net of 9 arcs of circles.

But is it minimal?

Is there a one-parameter family of minimal cones with K con-
nected?

Incidentally: is every minimal 2-set in R® (or R*) automatically
a cone’



4. Local regularity of almost-minimal 2-sets in R"7
(besides Jean Taylor’s theorem)

Let E be an almost-minimal 2-set in R", n > 4, and let z € E.
Known : F is, in some B(z,r), biHolder-equivalent to a mini-
mal cone.

But we don’t have a list of minimal cones.

We can get the C'l-equivalence in some cases only, depending
on the “full length property” of one (or all) tangent minimal
cone(s) to E at .

|[Property concerning the variations of length for perturbations
of K into other nets of geodesic arcs. We don’t have counterex-
amples either.]



5. When is P, U P, C R* minimal?

Théoreme 1. The union P; U P, of two orthogonal planes is
minimal.
This 1s classical, and relies on the following facts.

e Denote by 7, the orthogonal projection onto P;. Then ;(F)
contains P; whenever F' 1s a competitor for P; U Ps.

o If F' is rectifiable if ds denotes a surtace element of F', then

(6) m1(ds) + ma(ds) < ds.

Amusingly false in dimension d = 1.
By the way, L1 U Lo 1s never minimal.



Proof. We shall use this like a calibration.
Out of some cube ), FF = P U P;. And on @,

H*(FNQ) = /FmQ ds > /FmQ m1(ds) + ma(ds)

> HA(m(FNQ))+H (m(FNQ))
>H (PLNQ)+H(P,NQ)
=H*((PLUP) N Q).

Lemma. If P, 1L P>, PUP; is the only mininimal set in () s.t.
H?(E) < H*(PLUP)NQ) and 7;(E) D P, NQ for j =1, 2.

Proof. We check the equality cases in (6), and the minimality
finally allows us to eliminate the remaining cases.
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When i1s P; U P, minimal?

When they make small angles, we can pinch in the middle and
P; U Ps 1s not minimal.

Frank Morgan gives a conjectural condition on the angles, under
which P; U P, should be minimal, and Gary Lawler shows that
one can pinch when it is not satisfied. Partial converse below.

We focus on the almost orthogonal union P* = P; U Ps,
where

[(v1,v2)] < elvy]|ve| for v; € Pf and vy € Ps.

Theorem (Xiangyu Liang). If e > 0 is small enough,
P¢ 1s minimal.
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6. Scheme of a proof modulo Plateau

Recall P = P; U P5. Suppose that, for a sequence of ¢
that tends to 0, P° is not minimal.

Let £ = f(P°?) be a better competitor in the unit cube Q.
We look for a contradiction. Unfortunately, no known algebraic
trick as above.

Easy: f should not be injective. But we need to show that
we save less by pinching than we lose by rotating the P, before.

Note that for € small, (6) almost holds and pinching pays
very little.

Things would be easier if £ minimized H*(E N Q) among
deformations of P° in (). So that we can use the minimality of
E* in (). Unfortunately, no known result seems to give such an
E*. Bul let us pretend anyway (a more complicated fix exists).
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Denote by m; and 7o the orthogonal projections on Py and Fs.
We may assume that Py = P;.
We take () with faces parallel to the P;.

Take a sequence of € that tends to 0 such that E® tends to
a limit £°°. Each E° is minimal inside @), so (by a theorem on
limits) £°° is minimal inside Q).

Next m;(E€) D Pf (because E° is a deformation of P*),
hence 7;(E°°) D P; (take limits).

Also H2(Ec N Q) < HY(P* N Q) by definition of E¢, hence
H2(E>~ N Q) < HYPFN Q) by a theorem on the lower semi-
continuity of H¢ along sequences of quasiminimal sets.

The lemma says that £°° = P; U P,. That is,

() E°€ tends to Py U Ps.
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Let 0 > 0 be small.

We want to find an origin x¢ and a radius rg such that E¢ is
drg-close to xg + Py U Py in B(xg,r9) but r9/2 does not work.

At large scales, E° looks a lot like P; U P5, so (for € small)
ro =0 and 1072 < ry < 1 would work.

When (x,r) works, we try to find («',r/2). We stop when we
cannot find x’ any more. If we never stop, easier argument.

By construction, E¢ is 20r¢-close to an = + P; U P> 1In every
B(xg,10r) \ B(zg,7), > 79.

By Jean Taylor’ theorem and gluing, £ is composed of two nice
C! graphs out of B(xg,2ry), Ef (horizontal) and ES (vertical).
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Define cylinders Vj(r) = (n5) ™" (B(xo,7)) for r > 1o, j = 1,2.

First cut F° in three: choose r € (2rg,4ry), and write
E¢ = FUF,UFy, with FF = E€NVi(r)NVa(r), F} = E5\ Vi(r),
and Fy = E5 \ Va(r). First ty to estimate brutally:
HAE®) = HA(F) + H (Fr) + HP (Fa)
> HAF) + H (71 (F1)) + H (3

(1) Fy)).
For j = 1,2, H2(P§) = H2(n5(Fy)) + H(m

(
5 (Vi(r)))

J
(disjoint union). We subtract both things from (1) and get that
HA(B°)=H?(PFUPS) > HA(F)=H (m] (Vi (r))) —H* (m5(Va(r)))

a contradiction with the definition of £¢ if we show that
(2) H(F) > 1 (n] (Vai(r))) + H (75 (Va(r))).
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Recall that we would like
(2) HA(F) > H (nf (Vi(r))) + H (n3(Va(r))).
But now the analogue of (6) on page 9 is that
(3) m1(ds) + ma(ds) < (1 — Ce)ds
(for surface elements ds in F'), which merely yields
(4) (1= Ce)H(F) > H (1 (Vi(r))) + H* (m5(Va(r))).

So we shall get a contradiction if we can improve the estimates
above by more than C’ery > CeH?*(F).
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Recall that for 2rg < r < 3rg, E! N OVi(r) is the graph
over the circle c(r) = Pf N 9Vi(r) of a nice C! function f.

Case 1. We can find r € (279, 3rg) such that

(5) / V@) e e 2 670°

for some small §; << §) to be chosen later; Me(ryJ 18 the mean
value. We know that F} is the graph over P{\ Vi (r) of a nice C'
tunction g, with g = f on the boundary. Standard estimates
on harmonic functions yield [ |Vg|? > ¢§ir?, and then

(6) M (F1) > HA (PP \ Va(r)) + cdir?

which is more than enough (if € is small).

17



Case 2. No r can be found as above, nor with respect to Ps.

Recall that by minimality of rq, E¢ is drg/2-far from all
CIZ—|—P1 UP2 1n B(QZ(),?“()).

By a compactness argument, E° is also ds7p-far from all
T+ Pl U P2 n Vl (37“0) M Vg(gro) \ V1(27“0) M VQ(QT()). Here 52 > ()
is very small, depending on 9.

Then EY is doro-far from all planes in V3 (3r¢) \ V1(2rg) (or
the same thing with the vertical part).

Take 07 << d2. By definition of Case 2, every ENAV;(r),
2rg < r < 3rg is very close to a circle.

Then two of these circles (say with 2rqg < r < r; < 3rg)
are at different altitudes (more than d7g/2).
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We further cut Fy into Fy; = Ef N Vi(ry) \ Vi(r) and
Fi o= FE7\ Vi(r1) and say that

HA(F)) = H*(Fy 1) + H?*(Fr2) > HA(Frq) + H2(PF\ Vi(r))

and
HZ(FLl) Z HQ(Ple M Vl(Tl) \ Vl(T)) -+ C(Sg?“g

because of the different (almost circular) boundary values and
a simple estimate on gradients. We add and get that

HA(F1) = HA(PL\ Va(r)) + edarg,

a suflicient improvement.
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How to manage without Plateau?

The previous argument shows that some existence results
tor Plateau-like problems could be useful. But here we can
manage without this.

There is an argument by V. Feuvrier that constructs a min-
imal set £ in (), starting from a correctly modified minimizing
sequence { E7; } of deformations of Py U PS5 in Q.

Now E* is not necessarily a deformation of the E;. But its
projections still contain the P;, and eventually we can apply
the uniqueness result above to show that £ = P, U Ps.
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