Einstein's general theory of relativity provides a geometrical description of gravity in terms of space-time curvature. The Einstein field equations pose fascinating challenges that have stimulated a great deal of research in geometry and partial differential equations. Important questions include the well-posedness of the initial value problem, the linear and non-linear stability of space-times, the formation of black holes, and the boundary value problems arising from the classical aspects of the AdS/CFT correspondence. I will give a survey of some significant advances and open problems pertaining to these questions. No background knowledge of General Relativity will be assumed.
A completely new approach via optimal transportation was proposed by Lott-Villani and Sturm almost ten years ago. Via such an approach one can give a precise definition of what means for a non-smooth space to have Ricci curvature bounded below. Such an approach has been refined in the last years giving new insights to the theory and yielding applications which seems to be new even for smooth Riemannian manifolds