TRABAJO FIN DE GRADO PROPUESTO POR ANTONIO CUEVAS

Curso 2016-17

Estimación de conjuntos

Descripción básica del tema

En esta teoría se analiza el problema de reconstruir (o "estimar", en terminología estadística) un conjunto compacto S del espacio euclídeo R^d a partir de una muestra aleatoria de puntos. El objetivo fundamental es estudiar cómo puede hacerse esta estimación de manera "óptima" y analizar las propiedades asintóticas de aproximación de los estimadores cuando el número de puntos de la muestra tiende a infinito.

Herramientas generales y prerrequisitos

En este tema confluyen técnicas de geometría estocástica y de estadística no paramétrica. La formación previa mínima para abordarlo es un curso de probabilidad (*Probabilidad I y*, mejor aún, también la *Probabilidad II*). Sería deseable también (aunque no imprescindible) un curso básico de estadística matemática al nivel de la *Estadística I* de nuestro grado. Se necesitarán también conceptos básicos de geometría euclídea y de geometría convexa que pueden recordarse (o adquirirse) en el curso de la realización del trabajo.

Aplicaciones prácticas

La estimación de conjuntos tiene algunas aplicaciones en diferentes campos, que incluyen:

- Biología, ecología: estimación del hábitat de una especie o el "home range" (llamado a veces "área de campeo" en castellano) de determinados animales a partir de datos de sus posiciones en diferentes puntos.
- Análisis de imágenes.
- Control estadístico de calidad: para detección on-line de cambios en la distribución básica de una cierta característica en un proceso de fabricación.
- Econometría, análisis de productividad: en el problema de estimar la llamada "frontera eficiente".
- Análisis de conglomerados: la estimación de los conjuntos de nivel de la densidad subyacente que genera los datos proporciona información relevante para identificar los conglomerados de datos.

Historia, bibliografía

La teoría de estimación de conjuntos se remonta al menos a los años 60. Inicialmente se desarrolló en gran medida suponiendo que el conjunto S es convexo pero más

adelante se exploraron otras posibilidades, menos restrictivas bajo el punto de vista de las aplicaciones prácticas. Los artículos de Cuevas (2009) y Cuevas y Fraiman (2010) se pueden utilizar como una primera aproximación al tema. El libro colectivo de Kendall y Molchanov (2010) proporciona una perspectiva algo más amplia.

Planteamiento general del trabajo

Se trataría esencialmente de resumir la teoría en su estado actual (diferentes estimadores, propiedades de convergencia,...) y de analizar alguna de las aplicaciones mencionadas anteriormente. En todo caso, el planteamiento del trabajo se adaptaría a los intereses y la formación previa del estudiante.

Referencias:

(*) Cuevas, A. (2010). Set estimation: Another bridge between statistics and geometry. BEIO, 25, 71-85.

Cuevas, A. y Fraiman, R. (2010). *Set estimation*. In *New Perspectives on Stochastic Geometry*, W.S. Kendall and I. Molchanov, eds., pp. 374-397. Oxford University Press.

Kendall, W.S. y Molchanov, I. (2010). *New Perspectives in Stochastic Geometry*. Oxford University Press.

(*) Artículo disponible en

http://www.seio.es/BEIO/Set-estimation-Another-bridge-between-statistics-and-geometry-2.html