PROPUESTA DE TFG, CURSO 2016-17 MATTEO BONFORTE

1. La ecuación del calor fraccionaria.

Estudiaremos las propiedades basicas de los flujos del calor fraccionarios, en los cuales la difusión es dada por un operador no-local, que tiene en cuenta la influencia de las iteraciones de larga distancia. Las soluciones son dadas por convolucion con el nucleo del calor, que en este caso no es explicito y tiene "fat-tails", diferentes de la clasica cola Gaussiana. Extendemos al caso fraccionario la teoria de Widder (2) optimal, para soluciones no-negativas: existencia y unicidad en la clase optimal de soluciones con datos iniciales medidas crecientes. Tambien se estudiará el problema de las trazas iniciales.

Referencias.

(1) Matteo Bonforte, Yannick Sire, Juan Luis Vazquez Optimal Existence and Uniqueness Theory for the Fractional Heat Equation. http://arxiv.org/abs/1606.00873
(2) D. V. Widder. "The Heat Equation", Academic Press, New York, (1975).

2. Introducción a las ecuaciones de difusión no lineales.

Se estudiaran las propiedades basicas para ecuaciones de difusion no-lineales de tipo medios porosos o p-Laplaciano: existencia, unicidad, estimaciones a priori, comportamiento asintotico para tiempos grandes. Estos modelos tienen una gran importancia sea del punto de vista teorico sea del punto de vista aplicado y se exploraran varios aspectos en ambas direcciones, sea teoricas que mas aplicadas.

Referencias.

(1) J. L. V'azquez. "The porous medium equation. Mathematical theory". Oxford Mathematical Monographs.

The Clarendon Press, Oxford University Press, Oxford, 2007.