Departamento de Matemáticas UAM

  • Inicio
  • Inicio (2)
  • Presentación
  • Directorio
  • Organigrama
  • Intranet
  • Convocatoria de plazas

Investigación

  • Ayudas para investigación
  • Departamento
  • Grupos de investigación
  • Institutos de investigación
  • Seminars
  • Joint Mathematics Colloquium ICMAT-UAM-UC3M-UCM
    • Coloquios 2022/2023
    • Coloquios 2021/2022
    • Coloquio UAM-ICMAT
      • Coloquios 2019/2020
      • Coloquios 2018/2019
      • Coloquios 2017/2018
      • Coloquios 2016/2017
      • Coloquios 2015/2016
      • Coloquios 2014/2015
      • Coloquios 2013/2014
      • Coloquios 2012/2013
      • Coloquios 2011/2012
      • Coloquios 2010/2011
      • Coloquios 2009/2010
  • Memorial Rubio de Francia
  • Coloquio Premio Rubio de Francia
  • Coloquios Departamento

Minimal sets and cones in dimensions 3 and 4

Guy David, Université Paris Sud, Orsay, Francia. (pdf)

Viernes 19 de febrero de 2010 a las 11:30 en la sala 520 del módulo 17 de Ciencias, UAM

Resumen: Since Jean Taylor's work, the local structure of the two-dimensional minimal
(or almost minimal) sets (think about soap films in 3-space is well known; they are
locally equivalent, through C1 diffeomorphisms, to a minimal cone.
And there are exactly three types of minimal cones, which you can easily be observed in soap films.
In ambient dimension 4, the list of 2-dimensional minimal cones is not known yet,
and for instance the fact that the almost orthogonal union of two 2-planes is minimal
was only proved recently. This result will also be used as an excuse to discuss local
regularity properties of two-dimensional almost minimal sets in large ambient dimensions.

 

Volver

CSS Valid | XHTML Valid | Top | + | - | reset
Copyright © Eximium 2025 All rights reserved. Custom Design by Youjoomla.com
Inicio