Departamento de Matemáticas UAM

  • Inicio
  • Inicio (2)
  • Presentación
  • Directorio
  • Organigrama
  • Intranet
  • Convocatoria de plazas

Investigación

  • Ayudas para investigación
  • Departamento
  • Grupos de investigación
  • Institutos de investigación
  • Seminarios
  • Joint Mathematics Colloquium ICMAT-UAM-UC3M-UCM
    • Coloquios 2022/2023
    • Coloquios 2021/2022
    • Coloquio UAM-ICMAT
      • Coloquios 2019/2020
      • Coloquios 2018/2019
      • Coloquios 2017/2018
      • Coloquios 2016/2017
      • Coloquios 2015/2016
      • Coloquios 2014/2015
      • Coloquios 2013/2014
      • Coloquios 2012/2013
      • Coloquios 2011/2012
      • Coloquios 2010/2011
      • Coloquios 2009/2010
  • Memorial Rubio de Francia
  • Coloquio Premio Rubio de Francia
  • Coloquios Departamento

Geometric Methods for Statistical Learning and High-Dimensional Data

Mauro Maggioni, Duke University (cartel)

Miércoles, 17 de septiembre, Departamento de Matemáticas, aula 520, 12:00

Abstract: We discuss a family of ideas, algorithms, and results for analyzing various new and classical problems in the analysis of high-dimensional data sets. Many of these approaches are inspired by ideas in harmonic analysis. In the first part of the talk we discuss Laplacians and diffusion processes on graphs associated with high-dimensional point clouds, and their applications to the problem of parametrizing point clouds. In the second part of the talk we discuss novel multiscale geometric decompositions and approximations of point clouds, and exploit such decompositions to perform a variety of tasks in signal processing and statistical learning. In particular, we discuss the problem of dictionary learning, where one is interested in constructing, given a training set of signals (e.g. images), a set of vectors (dictionary) such that the signals admit a sparse representation in terms of the dictionary vectors. Finally, we discuss extensions of these constructions that enable one to learning estimators for probability measures generating the data, and for learning certain types of stochastic dynamical system in high-dimensions.

CSS Valid | XHTML Valid | Top | + | - | reset
Copyright © Eximium 2025 All rights reserved. Custom Design by Youjoomla.com
Inicio